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Abstract

We relate two representations of the cost of acquiring information: a cost that
depends on the experiment performed, as in statistical decision theory, and a cost that
depends on the distribution of posterior beliefs, as in the theory of rational inattention.
In many cases of interests, the two representations prove to be inconsistent with each
other. We provide a systematic analysis of the inconsistency, propose a way around it,

and apply our findings to information acquisition in games.

1 Introduction

For Bayesian decision makers, acquisition of information admits two standard representa-
tions: a statistical experiment P : © — A(X) mapping states of nature into probability
distributions over signals, and a random posterior p € A(A(O)) detailing a probability
distribution over posterior beliefs. The relation between these two representations is well
understood:! Given a prior belief 7 € A(O), every experiment P induces via Bayesian up-
dating a random posterior y = B(, P) that satisfies the martingale property [pdu(p) = .
Moreover, if the set of feasible experiments &£ is rich enough, then every random posterior
can be induced in this way by some experiment.

Analogously, we can distinguish between two alternative representations for the cost of

acquiring information. In one representation, the cost of acquiring information depends

*We are grateful to Jeffrey Mensch and Stephen Morris for useful comments and suggestions. Massimo
Marinacci gratefully acknowledges the financial support of ERC (grant INDIMACRO). Aldo Rustichini
thanks the National Science Foundation for financial support (grant SES 1728056).

!See, e.g., the classic Bohnenblust, Shapley, and Sherman (1949) and Blackwell (1951).



on the experiment that the decision maker performs, and is represented by a cost function
h : & — [0,00]. This has been the standard representation for the cost of information in
statistical decision theory since Wald (1950).

A different perspective has emerged from the work of Sims (2003) on rational inattention.
In the theory of rational inattention, the cost of acquiring information depends on the
random posterior the decision maker ends up with, and is represented by a cost function
c: A(A(©)) — [0,00]. In a widely adopted specification (e.g., Mat&jka and McKay, 2015),
the quantity c¢(u) is the expected reduction in the entropy of beliefs. Sims’s theory of
rational inattention has been influential and most recent research on the cost of information
has followed in his footsteps. An example is the growing literature on cost functions that are
uniformly posterior separable (Caplin, Dean, and Leahy, 2021), where entropy is replaced
by more general measures of uncertainty.

In this paper we study the relation between the two representations for the cost of
information h : £ — [0,00] and ¢ : A(A(©)) — [0,00]. Our initial finding is that in many
cases of interest, such as the entropy cost, the two representations are inconsistent with each
other. The reason is simple: h(P) is a function of the experiment P only, while ¢(B(m, P))
potentially varies both with the prior 7 and the experiment P.

Back to first principles, we define a cost on random posteriors that is consistent with an
underlying cost on experiments. Specifically, every cost function h defined on experiments

obviously generates a cost function ¢;, defined on random posterior:
en(p) = inf{h(P) : B(, P) = i}

where i := [pdu(p). For a decision maker with prior ji, the quantity c¢j (1) represents the
least expensive way to obtain the random posterior p by performing experiments whose
costs are given by h.

Many cost functions ¢ used in applications cannot be rationalized in this way: it may
be the case that there is no primitive cost function h defined on experiments that generates
c. For instance, the inconsistency arises whenever the cost c¢(u) decreases as the prior [
becomes more dogmatic—that is, as i puts more probability on a given state being true.
This property is satisfied by the entropy cost and, more broadly, by cost functions that are
uniformly posterior separable and bounded. These are all examples of cost functions ¢ that
are inconsistent with a primitive model of costly experimentation.

This paper introduces the notion of experimental cost of information. A cost function
¢ defined on random posteriors is experimental if it is consistent with a primitive model of
costly experimentation—that is, if there is a cost function A defined on experiments such

that ¢ = ¢,. Experimental cost functions are our main object of study.



To characterize experimental cost functions, we introduce a new ranking on random
posteriors, which we call the experimental order. A pair of random posteriors p and v is
ranked by the experimental order if every experiment that generates u Blackwell dominates
an experiment that generates v.2 If i = 7, then u experimentally dominates v if and only if
1 dominates v in the convex order, the traditional ranking of random posteriors. The convex
order ranks only random posterior with the same mean—that is, with the same underlying
prior. The experimental order extends the convex order by allowing comparisons across
priors.

We show that a cost ¢ is experimental if and only if it is invariant under ~;, the
symmetric part of the experimental order. If, in addition, ¢ is monotone in the convex
order, then c¢ is experimental if and only if it is monotone in the experimental order.

We establish a duality between the class of experimental cost functions ¢ and the class
of cost functions h that are invariant under ~j, the symmetric part of the Blackwell order.
Every h that is invariant under ~j induces a unique experimental c,. Conversely, fixing a
reference prior 7* (e.g., the uniform prior), every experimental ¢ is induced by a unique h,

that is invariant under ~;, defined by

The duality result is that ¢, = c and h., = h. If, in addition, ¢ is monotone in the convex
order, then h. is monotone in the Blackwell order; vice versa, if h is Blackwell monotone,
then ¢j, is monotone in the experimental order.

The duality result suggests a regularization scheme to bridge the gap between experi-
mental and non-experimental cost functions. To every cost function ¢, we can associate an

experimental cost function ¢* given by
¢ (B(r, P)) = c(B(x", P)).

We call ¢* the experimental version of c. We show that the cost function ¢* inherits struc-
tural properties of the original cost ¢, such as convexity, lower semicontinuity, and separa-
bility.

We apply our findings to information acquisition in games. As shown by Ravid (2020),
games with rationally inattentive players present a number of difficulties. In the game he
proposes, a seller and a buyer bargain over an indivisible good; the buyer has to exert costly
effort to learn the details of the seller’s offer—think of the offer as a complex contract with
many add-ons. Ravid adopts the rational inattention model for the buyer’s learning prob-

lem. He observes that the cost of information depends on the buyer’s conjecture about the

2The notions used in this introduction are formally defined in Section 3



seller’s strategy, an endogenous object, and shows that this generates a large multiplicity
of equilibria: any division of the surplus can arise in equilibrium. To overcome the multi-
plicity issue, Ravid proposes a refinement in the spirit of Selten’s perfect equilibrium; the
refinement is clever but may sometimes be impractical, for it relies on fine perturbations of
equilibrium strategies.

We revisit the bargaining game of Ravid (2020) from the experimental perspective we
propose in this paper. We observe that, if the cost of information is experimental, then it
is independent of buyer’s conjecture about the seller’s strategy. We show that, as a result,
no equilibrium refinement is needed and the analyst can obtain sharp predictions with
transparent arguments and minimal functional-form assumptions on the cost of information.
While we focus on a specific game, our methods apply more broadly. Information acquisition
in games makes salient the difference between Wald’s experimental approach and Sims’s
rational inattention.

Finally, we extend our framework to sequential information acquisition: the decision
maker can perform multiple costly experiments in sequence. We show that the main con-
clusions of the paper are robust to this extension. When information acquisition is sequen-
tial, more cost functions ¢ on random posteriors can be generated, not just functions that
are invariant under ~.,. Yet, not every cost function can be generated. In particular,
our inconsistency result extends from one-shot to sequential experiments: if the cost ¢(u)
decreases as the prior i becomes more dogmatic, then ¢ is inconsistent with a primitive
model of costly experimentation (unless ¢ is identical to zero), regardless of whether exper-
imentation is one-shot or sequential. The findings in the bargaining game are also robust

to the possibility that the buyer’s learning process is sequential.

1.1 Related literature

Since Sims (2003), most research on the cost of information has focused on functions ¢
defined on random posteriors, rather than on functions h defined on experiments. Among
the few exceptions are Mensch (2018) and Pomatto, Strack, and Tamuz (2020).

A classic question in statistical decision theory is how to complete the Blackwell order,
which is a partial order on experiments. Mensch (2018) proposes a completion of the
Blackwell order that satisfies an independence condition in the spirit of the von Neumann-
Morgenstern axiom in risk theory. Mensch provides several alternative representations
of this completion. In one representation, P dominates @ if and only if ¢(B(7*, P)) >
¢(B(7*,Q)), where c¢ is uniformly posterior separable and 7* is a fixed reference prior. In
the language of our paper, Mensch’s representation is the experimental version of c.

To model information production, Pomatto, Strack, and Tamuz (2020) provide an ax-



iomatic foundation to the cost h given by

W(P) = B(6,7)Drcr(Py| Pr)
0,7

where 5(0,7) > 0, with 6,7 € ©, and Dk, denotes the Kullback-Leibler divergence. To re-
late their work and rational inattention, they compute the induced cost function on random

posteriors, ¢ in the language of our paper.

The inconsistency between rational inattention and a primitive model of costly exper-
imentation has been discussed several times in the literature, mostly informally and in
specific contexts (see, e.g., Gentzkow and Kamenica, 2014, Mensch, 2018, Nimark and Sun-
daresan, 2019). Beside organizing and reviewing the two approaches and their connections,
we believe our work makes a contribution along several dimensions.

First, the discussion in the literature has focused on whether the cost ¢(B(m, P)) should
depend on the prior 7 or not. A take-home message of our paper is that dependence per
se is not an issue; for example, if information acquisition is sequential, then the induced
cost on random posteriors can exhibit a non-trivial dependence on prior beliefs. The main
issue we highlight is that such dependence should be disciplined. To put discipline, the
simplest way is to assume that information acquisition is one-shot and that ¢ is generated
by a primitive cost function h. This benchmark case is the focus of our paper.

In certain settings, it is more reasonable to assume that information acquisition is se-
quential. Our analysis leaves open the question of what cost functions ¢ on random pos-
teriors can be generated in this way. What we show is that the main conclusions of the
paper are robust to sequential learning. The inconsistency between rational inattention and
a primitive model of costly experimentation holds regardless of whether experimentation is
one-shot or sequential. The findings in the bargaining game extend to the case in which
the buyer acquires information sequentially.

A few recent papers have studied the relation between rational inattention and sequential
learning (e.g., Hébert and Woodford, 2019; Morris and Strack, 2019; Bloedel and Zhong,
2020). In contrast with our approach, these papers allow the flow cost of information—
what would be the function h in our paper—to depend arbitrarily on the evolving beliefs
of the decision maker. As a result, they are able to generate a richer class of cost functions
on random posteriors; for example, they provide a foundation to the entropy cost and,
more broadly, to cost functions that are uniformly posterior separable. Our analysis adds a
caveat: it is crucial that the flow cost of information can depend arbitrarily on the decision
maker’s evolving beliefs; if we put discipline, then the conclusion changes substantially. We
postpone a more detailed discussion to Section 7.2.

A second contribution of our work is to show that the difference between Sims’s ra-



tional inattention and Wald’s experimental approach can be of practical relevance. Of
course there are settings in which the difference is negligible—e.g., single-agent information
acquisition problem where the prior is fixed. The difference becomes salient when prior
beliefs are endogenous, such as in games where players acquire information about oppo-
nents’ past actions. Our analysis highlights the advantages of experimental cost functions
to study information acquisition in games. We hope this can encourage more applications;
Mensch (2018) already derives interesting predictions on costly monitoring in moral hazard
problems.

A third contribution of our work is to provide a bridge between Wald’s experimental
approach and Sims’s rational inattention. The regularization scheme ¢ — c¢* allows to
import tools from rational inattention into an experimental framework. For example, as
shown by Matéjka and McKay (2015), information acquisition problems have a tractable
solution for the entropy cost: the behavior of the decision maker admits a simple logit
representation. We show that a similar logit representation holds for the experimental
version of the entropy cost. The logit representation is one of the main tools in applications
of rational inattention; our analysis shows that such tool is available also when the cost of
information is experimental.

Overall, we see our work as a positive contribution to the rational inattention literature.
Most ingredients of Sims’s pioneering work are consistent with an experimental approach:
the flexibility in information choice; the role of limited attention; the techniques from in-
formation theory.> Our goal is to bring these ingredients within the classic framework of

statistical decision theory, to facilitate and encourage even more applications of Sims’s ideas.

2 Motivating example

Information acquisition in games makes salient the difference between Wald’s experimental
approach and Sims’s rational inattention. To illustrate, we revisit the bargaining game from
Ravid (2020) between a seller and a rationally inattentive buyer.

A seller and a buyer bargain over an indivisible good of value v > 0. The seller makes a
take-it-or-leave-it offer t € T C Ry to the buyer. The quantity ¢ is a monetary transfer to
the seller if the buyer purchases the good. Ravid (2020) assumes that 7' = Ry. Here, for
simplicity, we assume instead that T finite with v € T'and minT < v < maxT.

In deciding whether to purchase the good or not, the buyer is uncertain about ¢; we
have in mind settings in which the offer is formulated as a complex contract with many

clauses and add-ons. In Ravid (2020) the buyer can be uncertain also about v. Here, for

3See Macdkowiak, Mat&jka, and Wiederholt (2021) for a survey of rational inattention, theory and appli-
cations.



simplicity, we look at the special case where v is common knowledge.

To reduce the uncertainty she faces, the buyer can acquire information. The buyer’s
information is represented by an experiment. An experiment specifies, for every t € T,
a probability distribution P; over a finite set of signals X. The quantity P(z) is the
probability that the buyer observes signal z when the seller’s offer is t. We use the term
“experiment” in the broad sense of information structure rather than in the strict sense of
statistical procedure. For the buyer, running an experiment could represent reading a long
contract, hiring an external consultant, etc.

The buyer flexibly chooses how much information to acquire: she can choose any ex-
periment P := (P, : t € T'), that is, any function from 7" into A(X), the set of probability
distributions over X. We assume that X contains at least two distinct signals—otherwise,
the information acquisition problem would be trivial. After observing the outcome x of the
chosen experiment, the buyer updates her beliefs about ¢ and decides whether to purchase
the good or not.

Acquiring information is costly; the cost of an experiment could represent the time and
effort to understand a complex contract or the fee paid to a consultant. We analyze the
game under two alternative specifications for the cost of information. First we summarize
the results of Ravid (2020) who follows the rational inattention model. Then we revisit his

findings from the experimental perspective that we propose in this paper.

2.1 Rational inattention

The cost of information depends on the random posterior that the buyer ends up with;
it is represented by a function ¢ : A(A(T")) — R4. To illustrate, suppose that the buyer
believes that the seller randomizes over offers according to o € A(T'). Given an experiment
P, the buyer observes a signal = with probability P,(z) := ), Pi(x)o(t). Provided that
P,(x) > 0, Bayesian updating leads to the posterior belief p, € A(T) given by p,(t) =
Pi(x)o(t)/Py(x). The resulting distribution of posterior beliefs, which we denote by B(o, P),
assigns probability P,(z) to py. Overall, the buyer incurs cost ¢(B(o, P)) for running
experiment P.

In Ravid (2020), the main specification for the cost of information is the expected

reduction in the entropy of beliefs:

e(B(o,P) = kY (szx(t) 1ogp$<t>> Pofw) = kY a(t) log () (1)

t



where k > 0 parametrizes the marginal cost of information. The quantity

pr(t) logpw(t) - Z U(t) IOgO'(t) = <_ Z U(t) 10g0(t)> - <_ pr(t) log pa (t)>

t t

is the difference between the entropies of o and p,. Being entropy a measure of uncertainty,
entropy reduction provides an estimate of the amount of information gathered by the buyer.
Entropy reduction is a widely adopted specification for the cost of information in rational
inattention (see, e.g., Mat&jka and McKay, 2015).%

A strategy of the seller consists of a probability distribution over offers o € A(T). A
strategy of the buyer consists of an experiment P and a function 5 : X — [0, 1] that specifies,
for every signal x, the probability 5(x) € [0, 1] with which the buyer purchases the good. A
strategy o of the seller is a best response to a strategy (P, 3) of the buyer if, for every t € T
such that o(t) > 0,

Z tp(z)Py(x) = mtz}xz t'B(z) Py ().

X
A strategy (P, ) of the buyer is a best response to a strategy o of the seller if (P, 3) is an
optimal solution of the information acquisition problem
max » (v—1t)f'(x)P/(z)o(t) — c(B(o, P')).
P t
A strategy profile (o, P, 3) is an equilibrium if strategies are best responses to each other.?

The initial finding of Ravid (2020) is a large multiplicity of equilibria:

Proposition 1 (Ravid, 2020). Assume (1) for cost of information. For every t € T with

t <w, there is an equilibrium (o, P, ) such that, almost surely, trade happens at price t:
ot)=1 and Y B(x)Py(z) =1
x

Thus, any division of the surplus can arise in equilibrium. As Ravid (2020, p. 2953)
explains, the result is driven by the dependence of the cost of information ¢(B(o, P)) on the
buyer’s conjecture about the seller’s strategy o. To illustrate, take any ¢ € T with ¢ < v.

Suppose that the buyer believes that seller chooses ¢ with probability one: o(t) = 1. Since

“In (1), the quantity c(B(c, P)) is a concave function of o. As a result, the buyer’s cost of information
depends on her beliefs about the seller’s strategy in a non-linear fashion. As explained by Ravid (2020, p.
2952), this non-linearity makes the model a psychological game (Geanakoplos, Pearce, and Stacchetti, 1989).
In the experimental approach we propose in this paper, the buyer’s cost of information depends only on P;
thus the model falls within the traditional theory of games.

°In the definition of equilibrium, Ravid (2020) includes the buyer’s beliefs about the seller’s strategy and
adds the condition that, in equilibrium, they must be consistent with the seller’s actual strategy. Here, for
simplicity, we omit the buyer’s beliefs from the definition of equilibrium.



o is degenerate, every experiment induces the same degenerate random posterior that puts
probability one on . By (1), all experiments cost zero. Thus, in particular, the buyer
can monitor at zero cost whether the seller’s offer is actually ¢ or not. The buyer then can
“reward” the seller by purchasing the good if the offer is ¢ and “punish” the seller by not
purchasing the good if the offer is different from t.6 For the seller it becomes incentive
compatible to offer ¢: the buyer’s conjecture about the seller’s strategy is confirmed. The
buyer ends up purchasing the good at price ¢ without paying any information cost.

To get around the multiplicity issue, Ravid (2020) proposes an equilibrium refinement
in the spirit of Selten’s trembling-hand perfect equilibrium. Ravid deems an equilibrium
(0, P, ) credible if o is the limit in A(T) of a sequence (o) such that, for every n, o,
has full support and (P, 3) is a best response to 0,,.” Ravid shows that the refinement has

substantial bite:

Proposition 2 (Ravid, 2020). Assume (1) for cost of information. If (o, P, 3) is a credible

equilibrium, then trade fails with positive probability:
> B(x)Pi(x)o(t) < 1.

If k < v, then there exists an equilibrium where trade happens with positive probability; in

such equilibrium,

ov)=1 and Zﬁ(az)PU(x) =1- %

Thus, in every credible equilibrium, trade is inefficient. To appreciate the result, consider
the benchmark case without inattention where the buyer perfectly observes the seller’s offer.
Without inattention, the game has an unique (subgame perfect) equilibrium in which the
sellers offers v and the buyer accepts any offer ¢ < v, rejects otherwise; in particular, trade
is efficient.® Ravid’s result shows that inattention reverses this conclusion: if the buyer is
inattentive, trade is inefficient in every credible equilibrium.

The inefficiency of trade in credible equilibria is the first main result of Ravid (2020).
The result extends to the case in which the buyer is uncertain about v. The second main
result of Ravid (2020) applies specifically to the case in which the buyer is uncertain about
v. If the buyer is inattentive both about v and about ¢, Ravid shows that, in every credible

equilibrium where trade happens with positive probability, the buyer extracts a positive

5The punishment can be made sequentially rational by assuming that off-path the buyer believes that
the seller’s offer is maxT'.

"In Ravid (2020), the definition of credible equilibrium is slightly more involved because 7T is infinite and
this introduces some measure-theoretic subtleties.

8This is the unique subgame perfect equilibrium when 7' = R.. When T is discrete, there could be other
subgame perfect equilibria.



surplus from the seller. As detailed by Proposition 2, the result does not hold when v is

common knowledge. When v is common knowledge, the seller offers t = v with probability

one, which implies that the buyer’s surplus is zero.’

Ravid shows that his results extend to the case in which entropy in (1) is replaced by a

more general measure of uncertainty:
c(B(o,P)) =Y ¢(p.)Ps() - d(0) (2)

where ¢ : A(T') — R is continuous and strictly convex. As Ravid (2020, p. 2962) acknowl-
edges, his analysis leaves open the question whether the results extend to more general cost
functions or not.

2.2 Experimental approach

The cost of information h(P) € R4 depends only on the experiment P that the buyer
chooses. We do not make functional form assumptions on h; we just assume that an

experiment costs zero if and only if is uninformative:
h(P) = 0 if and only if P, = Py for all t,¢' € T. (3)

We define equilibrium to parallel Ravid (2020). A strategy profile (o, P, 8) is an equilibrium
if the following conditions hold:

e for every ¢t € T such that o(t) > 0,

> tB(x)Py(x) = mﬁth/B(x)B/ (z).

e (P, ) is an optimal solution of

e (0 =0 (@Fi(a)ott) = AP

The next result revisits the findings of Ravid (2020) from the experimental perspective we

propose in this paper.

Proposition 3. Assume (3) for cost of information. If (o, P,) is an equilibrium, then

9This is the unique credible equilibrium when T'= R,. When T is discrete, there could be other credible
equilibria.

10



trade fails with positive probability:
> B(x)Pi(x)o(t) < 1.

Moreover, if trade happens with positive probability, then the buyer extracts a positive sur-

plus:
Y B@)P(x)o(t) >0 = Y (v—t)B(x)Pi(x)o(t) > 0;

In particular, the seller randomizes between offers below and above v:

> B(@)Pi(x)o(t) >0 = maxo(t) >0 and maxo(t) > 0.

t<v t>v
Proof. First, assume by contradiction that (o, P, 3) is an equilibrium where trade happens

with probability one:

Y B(z)Pila)o(t) = 1.

By (3), the experiment P must be uninformative; otherwise, the buyer would have a prof-
itable deviation (P’, ") where P’ is uninformative and, for every signal x, 5'(x) = 1. Since
P is uninformative, > A(x)P;(xz) = 1 for all t € T. Thus o must put probability one on
t = maxT’; otherwise, the seller would have a profitable deviation in increasing his offer.
Since max 7' > v, the buyer must never purchase the good: S(z) = 0 for all z. This contra-
dicts the hypothesis that trade happens with probability one. We conclude that in every
equilibrium trade fails with positive probability.

Next, assume by contradiction that (o, P, 3) is an equilibrium where trade happens with

positive probability and the buyer extracts zero surplus:

> B@)Px)o(t) >0 and ) (v —t)B(z)Pi(x)o(t) = 0.

t.x

By (3), P must be uninformative; otherwise, the buyer would have a profitable deviation
(P', ") where P’ is uninformative and, for every signal x, #’(x) = 0. Since P is uninfor-
mative, Y B(x)P(z) =, B(z)Py(xz) > 0 for all ¢,/ € T. Thus o must put probability
one on t = max 7T otherwise, the seller would have a profitable deviation in increasing his
offer. Since max 7T > v, the buyer must never purchase the good: f(x) = 0 for all z. This
contradicts the hypothesis that trade happens with positive probability. We conclude that,
in every equilibrium where trade happens with positive probability, the buyer extracts a

positive surplus. It follows immediately that o(¢) > 0 for some ¢ < v.

11



Finally, assume by contradiction that (o, P, 3) is an equilibrium where trade happens
with positive probability and the seller’s offer is never above v:

Zﬁ(x)Pt(l')O'(t) >0 and maxo(t) = 0.

t>v

By (3), the experiment P must be uninformative; otherwise, the buyer would have a prof-
itable deviation (P’, ") where P’ is uninformative and, for every signal x, 5'(x) = 1. Since
P is uninformative, > B(z)Pi(x) = >, B(x)Py(x) > 0 for all ¢,¢' € T. Thus ¢ must put
probability one on ¢ = maxT: otherwise, the seller would have a profitable deviation in
increasing his offer. This contradicts the hypothesis that the seller’s offer is never above
v. We conclude that, in every equilibrium where trade happens with positive probability,
o(t) > 0 for some t > v. O

The proposition validates the findings of Ravid (2020), but also shows the advantages
of the experimental approach. First, Proposition 3 holds for all equilibria, not just for
credible equilibria. Second, Proposition 3 does not require any functional form assumption
on the cost of information. Third, the proof of Proposition 3 is short and transparent; the
arguments proposed by Ravid (2020) are clever but also not quite straightforward, since they
require a careful analysis of perturbations of the seller’s equilibrium strategy. Fourth, the
first two statements of Proposition 3 and their proofs extend verbatim to the case where the
buyer does not know v; thus we do not see the somewhat artificial distinction between the
cases of known and unknown v that arises in Ravid (2020). When v is common knowledge,
in every credible equilibrium of Ravid (2020), the seller offers t = v with probability one.
By contrast, per the last statement of Proposition 3, in every equilibrium of our revisitation
the seller randomizes between offers below and above v.19

This example and, more broadly, information acquisition in games motivate the rest of
the paper, where we provide a systematic analysis of the relation between Wald’s experi-

mental approach and Sims’s rational inattention.

3 Setup

We review a few preliminary notions, most of them due to Bohnenblust, Shapley, and
Sherman (1949) and Blackwell (1951).11

YProposition 3 extends verbatim to the case where T = [0, 00) as in Ravid (2020).
1 An early monograph covering statistical experiments is Blackwell and Girshick (1954), a more recent
one is Torgersen (1991). Le Cam (1996) authoritatively reviews the topic.
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3.1 Beliefs

We consider a finite set © of states of nature with typical elements 6 and 7. Let A := A(O)
be the set of probabilities on ©. Depending on the context, elements of A will be interpreted
as prior beliefs, generically denoted by 7w and p, or posterior beliefs, generically denoted by
p and q. We denote by A the set of probabilities on © with full support. We will often use
the uniform prior as reference point, which we denote by 7*. In a few examples, we work
with a binary state space © = {0,1}. When the state is binary, we identify A and the unit
interval [0, 1] under the convention that 7 € [0, 1] is the probability that 6 = 1.

Let A? be the set of Borel probabilities on A. Its elements, generically denoted by s
and v, will be interpreted as random posteriors, that is, as probability distributions over
posterior beliefs. We use the symbol ¢, for the Dirac measure concentrated on 7. We endow
A? with the weak* topology: a sequence (u,) converges to w if [ ¢du, — [ ¢ du for every
continuous function ¢ : A — R.

The probability i over states defined by

MZ/Apdu(p)

is the barycenter of pu. It will be interpreted as the prior from which p is obtained via
Bayesian updating. Let A2 be the set of random posteriors with barycenter 7. Let Ai be
the union of all A2 such that 7 has full support.

Elements of A? are ranked by the convex order. Let Cv(A) be the set of functions

¢ : A — R that are continuous and convex.

Definition 1. The convezr order >, is a binary relation on A? defined by W =y v if, for
all ¢ € Cv(A), the inequality [¢dp > [ ¢dv holds.

The convex order is reflexive and transitive. It is also antisymmetric (so, a partial order):
1 ~ep v implies p = v. In addition, only random posteriors with the same barycenter can

be ranked by =, if g =, v then i = .

3.2 Experiments

We fix a Polish space X of signals with Borel o-algebra X. Let A (X) be the set of all Borel
probabilities on X, generically denoted by £. We endow A(X) with the weak* topology:
a sequence (&,) converges to & if [ d, — [¢d¢ for every bounded continuous function
p: X =R

A statistical experiment is a map from states into probabilities on signals, that is, from
© into A(X). Typical experiments are denoted by P and @, with Py(A) and Qg(A) the
probability of event A € X in state 6, respectively. Let £ be the set of all experiments.
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An experiment P is simple if all Py have finite support. For simple experiments we use

the symbol supp P for the union of the supports of the Py:
supp P = {z € X : Py(x) > 0 for some 6}.

We call supp P the support of P.

We endow £ with a statewise mixture operation defined, for all « € [0, 1], by

aP+ (1 —-a)Q = (aPy + (1 — 2)Qp)gco -

The set of experiments £ can be regarded as the Cartesian product of copies of A(X), so it
can be endowed with a product topology: a sequence of experiments (P,) converges to an
experiment P if, for every state 6, the sequence (P, ) converges to Py in A(X).

Experiments whose signal space is A are called standard. Unless stated otherwise,
we assume that X is rich enough to embed A. Formally, we assume that the set A is
homeomorphic to a compact subset of X. For example, X could be a Euclidean space of
dimension greater than the cardinality of ©. This richness assumption allows us to identify
the set of standard experiments with a subset of £.

It will be useful to think of experiments in terms of likelihood ratios. Being © finite, for
every experiment P we can find a control (o-finite) measure A such that all Py are absolutely

continuous with respect to A.. The corresponding family of densities is

AP _(dp
dx  \dx 0co
We adopt the conventions 0/0 = 0 and 0-oc = 0. When no confusion should arise, we avoid

the “almost surely” quantifier.

Example 1. For a simple experiment P, the control measure A can simply be the counting
measure on the support: A(x) = 1 if x € supp P and A(x) = 0 otherwise. If so, then
dPy(z)/d\(z) = Py(x) for all z € supp P. If P is not simple, we can pick A = ), Py. In

terms of likelihood ratios, the particular choice of A is inconsequential. A

Experiments are ranked via the Blackwell order. A stochastic kernel K is a map from
X x X into [0,1] such that, for every z € X and A € X, the set function K(z,) is a
probability measure and the real-valued map K (-, A) is measurable. For £ € A(X), we
denote by K¢ the probability measure on X defined by

K§(A)—/XK(37,A)d§(a;).
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Definition 2. The Blackwell order > is a binary relation on £ defined by P > @ if there
exists a stochastic kernel K : X — A(X) such that Qg = K Py for all 6.

The Blackwell order is reflexive and transitive (so, a preorder). An experiment P is
uninformative if Py = P, for all 6,7 € ©. This is the case if and only if ) >, P for all
Qef.

3.3 A Bayes map
Given a prior belief 7, every experiment P induces via Bayesian updating a random poste-
rior, denoted by B(m, P). In this way, we define a Bayes map

B:AxE— A?

from pairs of priors and experiments into random posteriors.
Specifically, let Pr € A(X) be the predictive probability

Pr=> n(0)P
6

that gives the likelihood of different signal realizations. The process of Bayesian updating

associates, for Pr-almost all x, a posterior belief p, € A given by

dPy(z)/dA(z)
22 m(7) (dPr(2) /dA(2))

When P is simple, then p, follows the usual Bayes rule: for all « such that P.(z) > 0,

px(e) =

n(0)Py(x)

R ey

The densities dPy/d\ allow to extend Bayes rule beyond simple experiments that can
generate at most finitely many signals.

The random posterior B(m, P) is the pushforward of P, under the function x — p,. If
P is simple, then

Bx.P)= 3 Pr(@)d,
z€supp Pr

where d,, € A% is the Dirac measure concentrated on p;.

By the so called “martingale property” of Bayesian updating, if 4 = B(w, P) then i = .

There is therefore a well-defined sense in which experiments generate random posteriors:

Definition 3. An experiment P € £ generates a random posterior u € A? if u = B(fi, P).
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We denote by P* a generic experiment that induces p. Section A in the appendix

reviews the martingale property and other basic properties of the Bayes map.

4 Analysis

We introduce experimental cost functions, our main object of study. We take the perspective
of a decision maker who can perform an experiment P € £ at a cost h(P) € [0,00]. An
infinite costs represents an experiment that is not feasible. The decision maker may decide
not to perform any experiment; we represent the possibility by assuming that h(P) = 0 for
some uninformative experiment P.

The primitive cost h : € — [0, 00] induces a cost on random posteriors cp, : A2 — [0, oc]
defined by

cn(p) = inf{h(P) : B(fi, P) = p}.

The quantity cp(p) represents the least expensive way to achieve the random posterior
for a decision maker with prior & by performing experiments whose costs are represented
by the function h. It is well-defined because the set {P : B(f, P) = p} is nonempty (being

& rich enough; see Lemma 7 in the appendix).
Definition 4. A cost function ¢ : A% — [0,00] is ezperimental if it is induced by some
primitive cost function b : & — [0, 00], i.e., ¢ = ¢p,.

To simplify the exposition, we restrict the domain of ¢ to random posteriors in A%r. The
extension to priors with partial support presents no difficulties, as we discuss in Section C

in the online appendix.

In the rest of the section, we characterize what cost functions on random posteriors are

experimental. Our characterization is based on a new order on random posteriors:

Definition 5. The experimental order >, is a binary relation on A? defined by p >, v if,
for every P € £ such that B(f, P) = p, there is @ € & such that P =, Q and B(7,Q) = v.

In words, p experimentally dominates v when every experiment that generates the
random posterior p Blackwell dominates an experiment that generates the random posterior
v. Observe that the barycenters i and ¥ may be different. Indeed, as the next lemma shows,
the experimental order is a weakening of the convex order that permits to compare random

posteriors with different barycenters.
Lemma 1. The experimental order is a preorder. Moreover,

(i) 1 =ex v if and only if
{PE(“:B([L,P) tcvﬂ}g {Qeg:B(ljaQ) tC’U V};
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(ii) p ~ex v if and only if

{Pe&:B(pP)=p={Qec&: B Q)=r};

(iii) if p =cp v, then p =ep v. The converse holds if i = v.

The relation between =., and >, is characterized by (i), which also provides an alter-
native definition for the experimental order: p >, v when every experiment that induces
a random posterior more dispersed than p, also induces a random posterior more dispersed
than v, that is,

B(i, P) zev p = B0, P) zey v VP EE.

The special case where p ~¢, v is characterize by (ii): p ~e, v if and only if u and v are
generated by the same experiments. Overall, the experimental order is a weakening of the
convex order, but the two rankings coincide on random posteriors with the same barycenter,

as detailed in (iii). The next example provides a simple description of these relations.

Example 2. For every § € O, let §5, € A? be the Dirac measure concentred on the Dirac

measure dg € A that puts probability one on the state being 0. For all 7 € A, and p € A2,
Y o7(0)0s, mex pr. If i = m, then D, w(0)d5, = p. If o # m, then Y, w(0)ds, Feo p If
> o m(0)0s5, ~ex 1, then =", p(0)ds, for some p € A A

Next we relate experimental and Blackwell orders.
Lemma 2. For any P,Q € &, the following conditions are equivalent:
(i) P=p Q;
(it) B(w, P) Zex B(p, Q) for allm,p e Ay;
(7ii) B(mw, P) =z B(p, Q) for some w,p € Ay.

The experimental order has thus a simple Blackwell characterization when priors have
full support. This implies, inter alia, a variational representation of the experimental order
in terms of sublinear functions. Here Cs(R?) denotes the collection of continuous sublinear

functions ¢ : RY — R. To shorten notation, we denote by p/f the vector (p(6)/fi(8))sco-

Lemma 3. For all p,v € Ai, we have p =, v if and only if

Joo(B)we= [o(2)ww) e os@D.

The result extends to the case in which ¥ : A — (—o00,00] is sublinear and lower

semicontinuous.
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The next theorem relates experimental cost functions to the experimental order. Let H
be the class of cost functions h : £ — [0, 00| such that h(P) = 0 for some P € &; let C be
the class of cost functions ¢ : A2 — [0, oc] such that ¢(d;) = 0 for all 7 € A

Theorem 1. (i) A cost function ¢ € C is experimental if and only if it is invariant under
~er, that is,

:U’NexV:>c(/’L) :c(l/) Vl’L?VGA?‘r'

Moreover, c is induced by a unique h. € H that is invariant under ~y, given by
he(P) = ¢(B(7*, P)).

(ii) If h € H is monotone in the Blackwell order, then cj, is monotone in the convex

order and

cn(p) = nf{h(P): B(fi, P) =ev p} ~ Vp € AL

(iii) A cost function ¢ € C is monotone in the convex order and experimental if and only

if it is monotone in the experimental order. Moreover, h. is Blackwell monotone.

As the proof in the appendix shows, the choice of the uniform prior 7* is a convenient
normalization. We could have chosen any other prior with full support.

In many specifications of rational inattention, the cost function ¢ : A2 — [0, 00] is not
invariant under ~.,. Thus, by Theorem 1, it is not experimental. For example, it is often
assumed that ¢(u) decreases as the underlying prior i becomes more dogmatic. A corollary
of Theorem 1 is that such assumption is satisfied by only one experimental cost function,

the trivial cost function.

Corollary 1. For every experimental cost c : A%r — [0,00], the following conditions are

equivalent:
(i) For some 0 € ©, limyp)_,1 c(i) = 0.
(ii) For all p € A%, c(u) = 0.

Most notably, (i) is satisfied by the widespread entropy cost

CR /(Zp ) log p(6 ) Zu )log fi(0 (4)

See also (1). By Corollary 1, the cost function cg is not experimental, being cg not identical

to zero. More broadly, (i) is satisfied by cost functions that are uniformly posterior separable
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(Caplin, Dean, and Leahy, 2021) and bounded: given ¢ € Cv(A),?

colit) = /A o(p) du(p) — 3(7). (5)

See also (2). By Corollary 1, a cost function c¢ is experimental, uniformly posterior sepa-
rable, and bounded if and only if it is identical to zero. A related result is Mensch (2018,
Proposition 4), which shows that the quantity [ ¢dB(w, P) — ¢() is constant in 7 if and
only if ¢ is affine (and therefore [ ¢ dB(w, P) = ¢()).

Theorem 1 suggests a duality between functions that are invariant under ~j; and ~,.

Let H® C H be the class of functions h : & — [0, 00] that are invariant under ~y, and let

C® C C be the class of functions c: Ai — [0, 1] that are invariant under ~;.

Corollary 2. The map D : H® — C defined by D (h) = ¢, is bijective. Its inverse map
D71 ¢ce — H is given by D71 (c) = he. Moreover, if h is Blackwell monotone, then D(h)
is monotone in the experimental order; if ¢ is monotone in the experimental order, than

D~1(e) is Blackwell monotone.

We can diagram the duality, which is at the heart of our paper, as follows:

D
h

Ch

be Cem

The duality suggests a regularization scheme to bridge the gap between experimental
and non-experimental cost functions. To illustrate, observe first that the nature of an exper-
imental cost function is determined by its restriction on Afr*, the set of random posteriors
with barycenter 7*. For a pair of experimental cost functions ¢ and ¢, if ¢(u) = /(u) for
all u € A2, then by definition h. = h., which in turn implies ¢ = ¢’ by the duality result

(Corollary 2). This observation suggests a normalization map for random posteriors.

Lemma 4. There is a map A2 > p— p* € A2, such that i ~e; p*. In particular, the

following properties are satisfied:
(i) v =ex o if and only if v* =cp p*;
(ii) c(p) = c(pu*) whenever c is experimental.

The normalization map p — p* assigns to every random posterior p € Ai the unique
element of the equivalence class [u]., whose barycenter is 7*. The next example provides

an explicit expression for u*.

2In the unbounded case, ¢ may take infinite values outside A .
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Example 3. Let y € A?% have finite support {p1,...,pn}. The random posterior u is

generated by an experiment P, with finite support {z1,...,z,}, given by
pi(0)p(pi)
Py(zi) = ——
' fi(0)

The normalization p* satisfies p* = B(7*, P). Thus p* has finite support {pj, ..., p}} with

Py(zi)m*(0) _ pi(0)(=*(0)/(0))
() 2 pi(r)(m(7)/ (7))

pi(0) =

In addition,

W(p}) = Pree(i) =) Wu(pi)-
0

=

The expressions generalize to the case where 1 does not have finite support, using Radon-
Nikodym derivatives.'3 A

The map p — p* permits to introduce a regularization scheme for cost functions that

are not experimental.

Corollary 3. Given c € C, the function c¢* : A2 — [0, 00] defined by

is experimental. If, in addition, ¢ is monotone in convex order, then c* is monotone in the

experimental order.

We call ¢* the experimental version of c. We can enrich the last diagram as follows:

D
h

Ch cfe——=c

er Cea: C
D—l
he

In the next examples, we regularize the costs cg and ¢y defined in (4) and (5).

Example 4. Let Dgr,(£1]/€2) be the Kullback-Leibler divergence of £1,&s € A(X):

Jx log (d€1/d&s) A&y if & < &,

00 otherwise.

Dgr(&llé2) =

Define v € A% by dv(p) =3, %‘;(mdu(p). Then p* is the pushforward of v under the map

p(0) (" (6)/1(9))
2 (M) (r)/il(r))

p—
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The cost function cg can be written as an average of Kullback-Leibler divergences:

cr(p) =Y Drr(F}|PE)m(0)
(%

where P* is an experiment that generates . The experimental version of cg is
cr(p) = cr(p*) = Dir (P PL)*(6).
0

The corresponding primitive cost function hr = hes, is defined by

hr(P) = ZDKL(PGHPw*)W*(H)'
0

A

Example 5. Let © = {1,...,n}. Given ¢ € Cv(A), let ¢ R" — R its sublinear extension:

(Eizz‘ﬁb(ﬁ,---,ﬁ) if Y. 2 >0,

0 otherwise.

qg(zl,...,zn) =

The experimental version of cy is
* * 2 [ ;T PnT, «
o) = colut) = [ 6 (PP dute) - o),
A 251 Hn
where, to compute c4(1*), we use the expression for * in Example 3. The corresponding

primitive cost function hy = hc}i is defined by

[ .(dP, ,  dP, , )

A

The regularization scheme allows to import tools from rational inattention into the
classic framework of statistical decision theory. To illustrate, we go back to the bargaining

game from Section 2 and specialize the analysis to the functional form
h(P) =khp(P) =k > Dgi(P]|Ps)o™(t) (6)
t

where k > 0 parametrizes the marginal cost of information and ¢* € A(T') is the uniform
distribution over seller’s offers. As detailed in Example 4, hp is dual to cj, the experimental

version of the entropic cost cg. The function cg is the main specification for the buyer’s
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cost of information in Ravid (2020).

A key tool in applications of rational inattention is the logit representation of optimal
information acquisition from Matéjka and McKay (2015); we now provide an experimental
version of such result. To state it, given a strategy profile (o, P, 3), we denote by [; the
probability that the buyer purchases the good when the seller’s offer is ¢, and by S, the
average probability that the buyer purchases the good:

Br = ZB(x)Pt(x) and Bo = Zﬁta(t)-

t

Lemma 5. Assume (6) for cost of information. If (P, 3) is a best response to o, then

o forallteT,
(v=t)o(t)
e F D [y
Pt = e
¢ 0 foe 1 e

o [, is an optimal solution of the maximization problem

(v=t)o(t)
max Zlog <e RF@ 2 41— z) a*(t).

z€[0,1] n

Conversely, if z is an optimal solution of the maximization problem above, then there exists

a best response (P, 3) to o such that By = z.

The lemma provides a logit representation of the buyer’s best responses. As the proof
in the appendix shows, the logit representation generalizes beyond the bargaining game to
any information acquisition problem where (6) is the cost of information.

Next, building on lemma 5, we characterize the equilibria of the bargaining game. For
simplicity, we focus on the case in which T'= {2v/3,v,2v}: the seller can offer the good at
two-thirds of its value, its value, or twice its value.

The bargaining game admits two classes of equilibria, depending on whether trade occurs
or not. In the equilibria where trade does not occur, the seller randomizes between v and
2v, the buyer runs an uninformative experiment and never purchases the good. The next

proposition characterizes the equilibria where trade occurs with positive probability.

Proposition 4. Assume (6) for cost of information and T = {2v/3,v,2v}. If (o, P, ) is

an equilibrium with B, > 0, then the following conditions hold:

o forallt # v,
kot (), v(l—B+)
vt log t—vBex

o(t)
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o forallteT,
Bt = 760’*-

Conversely, for all z € (0,2/3) such that

k. 31-2) k 2—z

—log——2%+ —log— <1

v 08 2—3z+3v BT, ="

there exists an equilibrium (o, P, 3) with B, > 0 and Bs» = z. Finally, an equilibrium

(o, P, B) with B, > 0 exists if and only if

P —
3log3 —2log2

In every equilibrium where trade occurs, the seller is indifferent between all offers: t5; =
t'By for all t,t' € T. The seller randomizes over offers to make it optimal for the buyer to
choose a strategy (P, ) such that, indeed, t8; = ¢/By for all t,t' € T. In particular, the
seller always puts positive probability on ¢ = 2v/3 and on ¢ = 2v; this creates an incentive
for the buyer to acquire information. Finally, there exists an equilibrium where trade occurs
if and only if the marginal cost of information k is small relative to the value v of the good;
otherwise, the buyer’s incentive to acquire information is not strong enough to monitor the

seller’s offer and she chooses never to buy the good.

5 A taxonomy of cost functions

We study the intersections between the class of experimental cost functions and the main
classes of cost functions in rational inattention. We focus on the case in which h is Blackwell
monotone and ¢ is monotone in the convex order, the most relevant for applications. Let
H™ C HP the class of cost functions h : £ — [0, 00] that are monotone in Blackwell order,
C™* C C* the class of cost functions ¢ : A2 — [0, oo] that are monotone in the experimental
order, and C® C C the class of cost functions ¢ : A2 — [0,00] that are monotone in the
convex order.

We begin by discussing cost functions that are experimental and convex.

Proposition 5. (i) If h € H™ is convex, so is ¢, € C™ on each A2.
(i3) If ¢ € C™ is convex on A2., so0 is he € H™P.

(iii) If ¢ € C® is convex on AZ., so is ¢ € C™ on each AZ.

T*

Thus convexity is an invariant property of the duality map h — ¢, and it is also

preserved by the regularization ¢ — ¢*. The result has bite because the mixture operations
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for random posteriors and experiments can be quite different, as illustrated by the next

example.

Example 6. Let © = {0,1}. Choose P,Q € & such that

1 ifd=x2=0 1 ifd=0andz=1
Py(z) =<1 ifo=z=1 and Qo(x) =41 iff=1landz=0

0 otherwise 0 otherwise.

Both experiments P and @ perfectly reveal the state. However, the mixture experiment

P/2 + @Q/2 is completely uninformative:

1/2 ifzx 0,
(;P—F;Q)e(:c):;Pg(x)—F;Q@(m): / €10.1)

0 totherwise.

Thus, for every prior m € (0,1),
1 1 1 1

Mixing the random posteriors B (7, P) and B (7, Q) and mixing the experiments P and @
lead to quite different results. A

The example highlights the difference between mixing in A? and £. The convex com-
bination B(w, P)/2 + B(m,Q)/2 represents a decision maker with prior 7 who tosses a
fair coin and then decides whether to run experiment P or (). The convex combination
B(m, P/2 4+ @Q/2) corresponds to nature privately tossing a fair coin and then reporting to
the decision maker the outcome of the experiment P or (). In this latter case, the decision
maker does not know whether experiment P or () is performed.

The example also shows that Proposition 5 does not hold if, in the statement, we replace
“convex” with “affine.” If the framework is extended to lotteries of experiments, then the
induced cost function ¢, is convex even if the primitive cost h is not (see, e.g., Ravid,
Roesler, and Szentes, 2021).

Next we turn to cost functions that are experimental and lower semicontinuous.

Proposition 6. (i) If h € H™ is lower semicontinuous, so is ¢, € C™ on A%,

(i3) If ¢ € C™ is lower semicontinuous on A2., so is h, € H™?.
2

(iii) If ¢ € C® is lower semicontinuous on AZ., so is ¢* € C™® on AZ.

Thus lower semicontinuity is an invariant property of the duality map h — ¢, and it

is also preserved by the regularization ¢ — c¢*. The result has bite because the notions of
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convergence for experiments and random posteriors can be quite different, as illustrated by

the next example.

Example 7. Let © = {0,1} and X = [0,1]. Let (P,) be a sequence of experiments such
that P, 0(0) =1 and P, 1(1/n) = 1. The sequence (P,) converges to P such that Py(0) =
P;(0) = 1. Every P, reveals the state perfectly, while P is completely uninformative. Thus,
for every prior 7 € (0,1),

lim B (7, P,) = (1 — 7)dp + w61 ¢y 0z = B (m, P).

The map P +— B(w, P) is not continuous. A

The example highlights the difference between the topologies A? and £.1* In particular,
the example shows that Proposition 6 does not hold if, in the statement, we replace “lower
semicontinuous” with “continuous.”

Proposition 6 also shows that a cost function ¢ € C™* is lower semicontinuous on the
subdomain A2, if and only if it is lower semicontinuous on the entire domain A%—' Thus,
for experimental cost functions, “local” lower semicontinuity is equivalent to “global” lower

semicontinuity.

Following Caplin and Dean (2015) and De Oliveira, Denti, Mihm, and Ozbek (2017),

we introduce a class of cost functions.

Definition 6. A cost ¢ € C® is canonical if it is convex and lower semicontinuous on each
2
A%

The majority of cost functions considered in applications are canonical. From Proposi-

tions 5 and 6, it follows immediately that
e if h € H™ is convex and lower semicontinuous, then ¢, € C™? is canonical;
e if ¢ € C™® is canonical, then h. € H™ is convex and lower semicontinuous;
e if ¢ € C% is canonical, so is ¢* € C™*.
These observations motivate the following definition:
Definition 7. A cost h € H™ is canonical if it is convex and lower semicontinuous.

It follows from Theorem 2 of De Oliveira, Denti, Mihm, and Ozbek (2017) that every

canonical ¢ € C® admits a variational representation:

14 Other topologies on £ have been considered in the literature; see Section ?? for discussion.
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Lemma 6. A cost ¢ € C% is canonical if and only if for every m € AL there is a set
®™ C Cv(A), with supgeqer ¢(7) < 00, such that

= sup / o(p) du(p) — sup ¢(n) Ve A2
PeDT PEDT

Building on Lemma 6, the next result provides variational representations for the canon-
ical elements of C"™® and H™". In what follows, with a slight abuse of notation we denote
by 1 the vector of ones (1,...,1) € R®. To shorten notation, we also omit the restriction
Supyegr ¢(m) < 0o. We adopt instead the following convention: if supyeqr ¢(7) = 0o, then
c(p) =0 for g = 6, and ¢(p) = oo for p =y .

Proposition 7. (i) A cost ¢ € C™ is canonical if and only if there is a set W C C’s(R?)
such that

o(p) = Sup/ Y (Z) du(p) —sup ¢(1)  Vp e AL

Yev JA Pew

(ii) A cost h € H™ is canonical if and only if there is a set ¥ C Cs(R9) such that

h(P):sup/ ¢<dp> dr—supv(l) VPEE.

e JrO dA e

Following Caplin and Dean (2013), we define a subclass of canonical cost functions.

Definition 8. A cost c: Ai — [0, 00] is posterior separable if for every m € AL there is a

convex and lower semicontinuous function ¢™ : A — (—o00, 00| such that

— /A o™ (p) du(p) — 67(x)  Vp e AZ.

A chief example of posterior separability is the entropy cost cg, defined in (4), which

corresponds to the integrand
Zp ) log p(6

For the entropic cost function, ¢”™(p) is a finite quantity for all p € A. The cost function
proposed by Morris and Strack (2019) is an example of a posterior separable cost function

whose integrand can be infinite:

S p(0)log B8 ifpe A,

00 otherwise.

" (p) =
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Both cost functions are representatives of the subclass of uniformly posterior separable cost
functions, for which ¢™ is independent of .

We have already discussed the inconsistency between experimental cost functions and
uniform posterior separability (see Corollary 1). Next we characterize the cost functions

that are experimental and posterior separable.

Proposition 8. A cost c € C™* is posterior separable if and only if there is a sublinear and

lower semicontinuous function 1) : R? — (—00, 00| such that
p
c(p) =/ (8 () du(p) = (1) Vpe A%
A K
The result suggests the following definition:

Definition 9. A cost h € H™ is likelihood separable if there is a sublinear and lower

semicontinuous function ¢ : RY — (—o0, oc] such that

dP
h(P) = / P () dX — (1) VP e&.
R? d)\
Posterior separability and likelihood separability are dual notions:

Proposition 9. (i) If h € H™ is likelihood separable, then ¢, € C™ is posterior separable.
(ii) If ¢ € C™* is posterior separable, then h. € H™ §s likelihood separable.

(iii) If ¢ € C® is posterior separable, so is c¢* € C™*.

We can illustrate the result with the following version of the duality diagram:

h

Ch, cf— ¢

where the subscripts “Is” and “ps” stand for likelihood and posterior separable. In partic-
ular, the duality implies that hrp—obtained from the regularization of rational inattention,

see Example (4) for the definition—is likelihood separable.

Functionals of experiments that are, in our language, likelihood separable are central to
statistical decision theory. To refer to the elements of ’H;Zb, Torgersen (1991, pp. 351-360)
speaks of “monotone representable” functionals of experiments.!> When the state is binary,
likelihood separable cost functions correspond one-to-one to f-divergences, a major class of
statistical distances (Csiszar, 1963; Ali and Silvey, 1966).

15\We prefer “likelihood separable” to “monotone representable” in order to emphasize the duality with
“posterior separable,” a denomination that is by now established in economics.

27



Definition 10. Let f : (0,00) — R be a convex function. The f-divergence between
&1,& € A(X) is the quantity

d d¢&y/dA
Df(fl”&):/x(f; <d§;;d)\> dA

where ) is control measure for & and &.16

Proposition 10. Let © = {0,1}. A cost function h : € — [0, o] is likelihood separable, with
Y finite on the interior of its domain, if and only if there is a convex function f : (0,00) — R
such that

h(P) = D¢(Po|[Pr) — f(1) VP EeCE.

Thus f-divergences can be used to construct likelihood separable cost functions.'” A
main example of f-divergence is the Kullback-Leibler divergence, which corresponds to

f(t) =tlogt (see Example 4). Proposition 10 implies that the cost
h(P) = Dgr(Pol|P1)

is likelihood separable. The cost function proposed by Pomatto, Strack, and Tamuz (2020)

can be seen as a generalization beyond the binary case.

6 Information acquisition problems

We apply the duality between h € H® and ¢ € C* to information acquisition problems.

6.1 Primal form

Consider a decision maker who must choose among a set of alternative actions whose con-
sequences depend on the state of nature, which is uncertain. Formally, there is a finite set
A of available actions a that can result in different material consequences ¢, within a set C,
depending on which state § € © obtains. In particular, the dependence of consequences on
actions and states is described by a consequence function ( : A x © — C. Finally, a utility

function v : C'— R ranks consequences. The quintet
(4,0,C, ¢ u)

is a decision problem under uncertainty.

5Behind the integral is adopted the conventions f(0) = lim;—o f(t) and 0 - f (£/0) = tlims—eo f(5)/s.
17T jese and Vajda (2006) present related results on f-divergences and measures of information.
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Suppose the decision maker can choose to perform an experiment P € £ that (proba-

bilistically) generate signals x € X that give information about the state. The septet
(A’ 67 C’ X7 57 C? u)

is an information acquisition problem. Here the function ( : A x © x & — C details,
for each experiment P, a consequence ( (a,f, P) determined by selecting action a when
state § obtains.'® Information acquisition problems were first formulated by Wald (1950).
Wald was mostly interested in representing statisticians as decision makers, so he speaks of

statistical decision problems.

As it is often convenient, we distinguish between “gross” consequences and costs. We
assume that each experiment P has a monetary cost h (P) € [0, o], for instance determined
by its market price. Taking action a in state 0 leads to a gross consequence 7(a, 6), within
a set G. The “net” consequence ((a,d, P) can be decomposed into gross consequence and

cost. Specifically, we assume

V(a,0) =~(b,7) and h(P) = h(Q) = ((a,0,P)=((b,7,Q). (7)
The next example illustrates two main cases.

Example 8. (i) The gross consequence is monetary as well. Here C' C [—00, 00) and
¢(a,0,P)=~(a,0)—h(P).
The utility function v is over monetary amounts, with
(uo¢)(a,0,P) =u(y(a,0) —h(P)).

The formulation arises in applications to macroeconomics and finance, e.g., the decision
maker is an investor who can acquire additional information about asset returns before
re-balancing her portfolio (Cabrales, Gossner, and Serrano, 2013).

(ii) The gross consequence is not monetary. Here C' = G x [0, o] and

C(a,@,P) = (7(a79)7 h(P))

Via a quasi-linear utility function u : G x [0, 00] — [—00,00) given by u (g,t) = ug (g) — t,

18Tn certain applications, the material consequence of the decision makers’ behavior could depend also on
the realized signal; if so, the domain of the consequence function should be A x © x & x X.
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with up (¢9) = u (g,0), we then have

(UOC)(Q797P):uo(V(aae))_h(P)'

Here ug provides a representation of gross consequences in monetary terms. The quasi-linear
formulation is common in mechanism design (Persico, 2000; Bergemann and Valiméki, 2002)
and discrete choice (Matéjka and McKay, 2015). A

The decision maker is Bayesian with prior belief 7 € A, .1 Solving the information
acquisition problem, the decision maker first selects and performs an experiment, then
updates her beliefs as a result of the signal she receives, and finally takes an action that is
optimal given the posterior belief. We can formalize the information acquisition problem

as follows:

pPe& a€A

max/ (max v(a,0,h(P))py («9)) dP; (x) (8)
X 0
where v: A x © x [0, 00] = [—00,00) is the payoff function given by

v(a,0,t) = u(((a,d,P)) with t = h(P).

The payoff function is well defined by (7).

Example 8 (Continued). In the monetary case, the information acquisition problem is

max / <max w(v(a,0) — h(P))ps (9)) dP; (z),
X 9

pe& acA

while in the quasi-linear case it becomes

max/ (max vo(a, 0)ps (9)) dPy (x) — h(P)
X 0

Pe& acA

where vg(a, ) = ug(y(a,)) is the gross payoff from action a in state 6.
The quasi-linear specification has a convenient separable form. In the monetary case,

such a form arises when u is CARA and we move to certainty equivalents:

r})lgg{ufl (/X <r;1€a2‘( 9 u(y(a,0))ps (9)) dP; (:C)) — h(P).

The result follows from some simple algebra. A

Q . . . . o .
9Wald also considers non-Bayesian decision makers—most notably, decision makers who evaluate alter-
natives on the basis of the worst case scenario.
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Let A be the set of action rules a : £ x X — A such that, for every P € &, the section
ap : X — A is measurable. A solution of the information acquisition problem is a pair
(a4, P) € A x € such that (i) each action ap (x) is optimal given each experiment P and
signal z, that is, for all a € A

S v(ap (z),0,h(P >Z (a,0,h(P))ps (0),

0

and (i) P is optimal given the action rule a p that it determines, that is, for all P € &,

Zw(e)/Xv(ap (z),0,h(P))dPy (z Z / p(x),0,h(P)) dPy (z).

0

6.2 Dual form

The duality established by Theorem 1 between H’ and C** leads to a dual version of (8).

Given a cost ¢ : Ai — [0, 00], the dual information acquisition problem is

HEAZ acA

num¥/ (nmx z&meﬂxu»p«»> du(p). (9)
A 0

To relate (8) and (9), we define V : Ay x & — [—00,00) and W : A2 — [—00,00) by

V(m, P) = /X (I‘?ea‘i{%: v(a,0,h (P))ps (9)) dPr (z)

and
szA@ggwwmmwﬂw@.
Proposition 11. For h € H® and ¢ € C** such that ¢ = ¢p, we have:
(i) maxpeg V(P,m) = max,ca2 W(u);
(i) if P maximizes V(m, P), then B(m, 15) mazimizes W () for p € A2;
(i) if i mazimizes W (p) for u € A2, then P* mazimizes V (r, P).

We can diagram the duality between solutions as follows:

B




Depending on the context, it may be convenient to study information acquisition in
primal or in dual form. The next example provides an illustration for quasi-linear environ-

ments.

Example 9. In quasi-linear environments, the primal information acquisition problem is

Pe& acA

maX/X (maxz vo(a, 0)py (9)) dP; () — h(P). (10)
0

When h is canonical (see Definition 7), we can conveniently reduce (10) to a finite-
dimensional convex program. To illustrate, let £4 be the set of experiments P : © —
A(A) whose signal space is the set of actions. Being h Blackwell monotone, from standard

arguments in the stile of the revelation principle it follows that (10) is equivalent to

max 02@: vo(a, 0)Py(a)m(0) — h(P). (11)
If (@, P) is a solution of (10), then Qy(a) = ]59(&13 = a) defines a solution of (11); if Q is a
solution of (11), there there is a solution (a, P) of (10) such that Qg(a) = Pg(dp =a).
When £ is canonical, (11) is a finite-dimensional convex program. A canonical cost
function h is convex and lower semicontinuous. In addition, being ® and A finite, the set
€4 can be identified with a convex subset of a finite-dimensional Euclidean space. Thus (11)
can be studied as a finite-dimensional convex program (e.g., with Lagrange multipliers).
When £ is likelihood separable (see Definition 9), it may be convenient to study infor-
mation acquisition in dual form, for it reduces to a concavification. The dual information

acquisition problem is

max/A <max2vo(a, 0)p(9)> du(p) — en(p). (12)
9

HEAZ acA

When h is likelihood separable with integrand ) : RJ@F — (—00, 0], the dual cost function
cp, is posterior separable with integrands ¢™ : A — (—o00,00] defined by ¢™(p) = ¥ (p/7)
(see Proposition 9). As observed by Caplin and Dean (2013), when the cost function is

posterior separable, (12) reduces to a concavification:

max /A (Teafz vo(a.0)p (6) — ¥ (i)) du(p) + (1),
0

HEAZ

Concavifications feature prominently in economics, e.g., in Bayesian persuasion. A

32



7 Sequential information acquisition

We consider an extension of our framework where information acquisition is sequential.

7.1 Setup and analysis

Let X™ be the Cartesian product of n € N copies of the signal space X; we endow X" with
the product topology and the corresponding Borel o-algebra.

Suppose the agent can perform a finite sequence of experiments P" = (P,..., P,). The
i-th experiment in the sequence may depend on the outcomes of the first i — 1 experiments,
so we represent it as a Borel measurable function P; : X~ x © — A(X). We adopt the
convention that X° = {@}.

We denote by " the set of sequential experiments of length n; clearly, £' = £. Let
P

i—1 € £ be the one-shot experiment that the decision maker performs after an history of

signals 21 € X~1. We focus on a basic specification where there is no discounting and

the flow cost of experimentation
h (Pgi-1) € [0, 00] (13)

is independent of the previous experiments P, ..., P;_1 and their outcomes x1,...,x;_1.

Given a prior belief 7 € AL, the expected cost of the sequential experiment P is
n . .
h(m, P") = Z/ h(Pyi-1) AP (21
=1 /X!

where P:~t € A(X®"1) is the predictive probability generated by the prior m and the first
i — 1 experiments P, ..., P,_;. For the integral to be well defined, we assume that the flow
cost function h : £ — [0, 00] is Borel measurable.

The induced cost cpn : A2 — [0, oc] over random posteriors is
cpn () = inf {h(f, P") : B(fi, P") = p}

where B(fi, P") is the random posterior generated by prior i and sequential experiment
P". The random posterior B(fi, P™) is the distribution of the posterior beliefs that the
decision maker would hold after observing the full sequence of signals 2" = (x1,...,z,) and
updating her prior belief 7 accordingly.

The cost function cpn corresponds to the case in which the agent can perform any

sequential experiment of length n. We write cpe : A2 — [0, 00| for the case in which the
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decision maker can perform any sequential experiment of any length:
Cpoo (1) = i%f cpn ().

Definition 11. A cost function c: A%r — [0, 00] is experimental of order n =1,2,..., 00 if

there is a flow cost function h : &€ — [0, 00] such that ¢ = ¢pn.

An experimental cost function of order n = 1 is simply an experimental cost function,
as we defined in Section 4. In Theorem 1 we showed that a cost function is experimental if
and only if it is invariant under ~.,, the symmetric part of the experimental order. When
sequential experiments are allowed, the induced cost function on random posteriors may

not be invariant under ~,, as the next example shows.
Example 10. Let © = {0, 1}. Take a one-shot experiment P given by
if0=0and x=0

1
Py(z) =<0 iff=0andz=1
if 0 =1and z € {0,1}.

D=

The experiment P has two possible outcomes, 0 and 1. If § = 0, then = = 0 with probability
one. If # =1, then x = 0 and z = 1 are equally likely.

Consider a primitive cost function h : &€ — [0, 00) given by

0 it P>
CI R

1 otherwise.

Every experiment that is less informative than P is free. Every other experiment costs one.
Suppose that the decision maker can perform sequential experiments of length n = 2.
Starting from a prior 7 € (0, 1), the least expensive way to perfectly learn the state and

obtain random posterior (1 — 7)dg + 707 is
e run experiment P first;
e if the outcome is x = 1, stop experimenting;
e if the outcome is x = 0, run an experiment that perfectly reveals the state.

The expected cost of the procedure is the probability of running the second experiment:

cpz2 (1 —m)do + my) =1 — g
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If p € (0,1), then (1 — p)dg + pd1 ~ex (1 — 7)o + m01. However, ¢;2 ((1 — m)dp + wd1) =
cpz (1 = p)dg + poq) if and only if m = p. Thus ¢,z is not invariant under ~;. A

As the example shows, when the decision maker can perform sequential experiments,
the induced cost function on random posteriors may not be invariant under ~.,. Yet, not

any cost function on random posteriors can be induced:

Proposition 12. Let © = {0,1}. If ¢ : A% — [0,00] is lower semicontinuous on each

subdomain A2, monotone in the convex order, and experimental of order n = 1,2, ..., 00,

T

then the following conditions are equivalent:
(i) For some 0 € ©, limyg)_,1 c(i) = 0.
(ii) For all p € A2, c(p) = 0.

For the benchmark case of a binary state space, Proposition 12 extends Corollary 1. In
particular, it implies that a cost function is experimental of order n = 1,2, ..., 0o, uniformly
posterior separable, and bounded if and only if it is identical to zero. For example, the
entropic cost function used by Matéjka and McKay (2015) is uniformly posterior separable,
bounded, and not identical to zero; thus it is not experimental of any order n. Thus, the
inconsistency between rational inattention and a primitive model of costly experimentation
holds regardless of whether experimentation is one-shot or sequential.?’

As attested by Proposition 12, the experimental approach puts discipline on the relation
between prior beliefs and cost of information, regardless of whether the decision maker can

perform one-shot or sequential experiments. Next we provide another manifestation.

Proposition 13. Ifc: Ai — [0, 00] is experimental of order n =1,2,...,00, then for all
mp €Ay, a€(0,1], and P&

¢(Blar + (1 —a)p, P)) > ac(B(m, P)) + (1 — a)c(B(p, P)).

The result motivates the following definition:

Definition 12. A cost function ¢ : A2 — [0, oc] is concave in the prior if for all w, p € A4,
acl0,1],and P&

c¢(Blar + (1 —a)p, P)) > ac(B(m, P)) + (1 — a)c(B(p, P)).

A cost function can be concave in the prior but not experimental; for example, the

entropic cost function cg is concave in the prior (see Cover and Thomas, 2012, Theorem

290ne can derive stringent restrictions even without assuming that c is lower semicontinuous and monotone
in the convex order; see Claim 4 in the appendix.
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2.7.4) but not experimental of any order n (Proposition 12). Next we provide an example

from rational inattention of a cost function that is not concave in the prior.

Example 11. Many applications of rational inattention adopts the specification cg : A%r —
[0, o0] given by

0 ifer(p) <K

ck () = _

oo otherwise
where K > 0 is interpreted as a bound on the capacity of the decision maker to process
information. The cost function cg is quasi-concave but not concave in the prior. It is
a monotone transformation of cgr, which is concave—and therefore quasi-concave—in the

prior. As well known, monotone transformations preserve quasi-concavity but not concavity:

it is easy to come up with instances of m,p € Ay, a € [0,1], and P € & such that
cx(Blar+ (1 —a)p, P)) < ack(B(m, P)) + (1 — a)ex (B(p, P)).

A

In a context unrelated to sequential experiments, Miao and Xing (2020) discuss the
relation between cost of information and concavity in the prior. Assuming uniform posterior
separability, they show that, when the cost of information is concave in the prior, the value
function in information acquisition problems is convex in the prior. Next we generalize their

result beyond uniform posterior separability.

Proposition 14. Let ¢ : Ai — [0,00] be a cost function defined on random posteriors.

Consider the information acquisition problem

V(r) = max /A (max v(a,9>p<e>> du(p) — c(p)
0

HEAZ a€A

where 7 1s a prior belief, A is a finite set of actions, and v : Ax © — R is a utility function.

If ¢ is concave in the prior, then V(m) is a convex function of m € Ay.

The convexity in the prior of the value function—and therefore the concavity in the
prior of the cost function—has an appealing behavioral interpretation. Consider a two-
period information acquisition problem with a persistent state, so that the information
acquired “today” can also be used “tomorrow.” Solving the problem backwardly, let V'(7)
be the value of starting tomorrow with prior belief 7 € A, or, equivalently, the value of
ending today with posterior belief p = 7. If V(7) is a convex function of 7, then the
prospect of re-using today’s information tomorrow increases the incentive to acquire the

information today.
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Propositions 12 and 13 provide necessary conditions for a cost function to be experi-
mental of order n = 1,2,...,00. Our analysis leaves open the question of what conditions

are necessary and sufficient.

7.2 Discussion

The analysis of sequential information acquisition was pioneered by Wald (1947) and Arrow,
Blackwell, and Girshick (1949).

A few recent papers have explored the relation between sequential information acquisi-
tion and rational inattention; the closest to ours are Hébert and Woodford (2019), Morris
and Strack (2019), and Bloedel and Zhong (2020). These papers address questions similar
to ours, but allow the flow cost (13) to depend arbitrarily on the evolving beliefs of the de-
cision maker, as in rational inattention. As a consequence, more cost functions on random
posteriors can be generated. The next example from Bloedel and Zhong (2020) provides a

concrete illustration.

Example 12 (Bloedel and Zhong, 2020). Let ¢ € Cv(A). In contrast with (13), suppose

that the flow cost of running experiment P,i-1 is given by

Co (B (pxiflvpacifl)) = /A ¢dB (pziflapxifl) —¢ (pacifl)

where p,i-1 € A is the belief that the decision maker holds after a history of signals

2"l = (x1,...,2;_1). Given prior 7 € A, the resulting cost of the sequential experiments

P"is N
h(m, P") =Y / ¢y (B (Dgi-1, Pyi1)) AP (21,
i—1 /X!

Note, in particular, that h(w, P") is not an affine function of w. As Bloedel and Zhong
show, cy(B(m, P")) = h(m, P"). Thus, for all u € A%,

C¢(M) = inf{h(m, P") : B(fi, P") = p}.

A

Thus, if the flow cost depends arbitrarily on the evolving beliefs of the decision maker,
then any uniformly posterior separable cost function can be generated—e.g., the entropy
cost of Matéjka and McKay (2015). Our Proposition 12 adds a caveat: the arbitrariness is
crucial; if the flow cost depends only on the per-period experiment, then no cost function
that is uniformly posterior separable and bounded can be generated.

We believe that the restriction we impose on the flow cost is substantive. From the

perspective of rational inattention, a motivation for studying sequential information acqui-
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sition is to explain the dependence of the cost of information on the decision maker’s prior
beliefs. That is a fascinating line of research. However, if the flow cost can arbitrarily
depend on the decision maker’s evolving beliefs, as in Example 12, the exercise loses some
of its appeal. In a circular fashion, the problem of explaining the dependence of the ex-ante
cost of information on the decision maker’s prior beliefs becomes the problem of explaining
the dependence of the flow cost of information on the decision maker’s evolving beliefs.

More concretely, consider again the bargaining game of Section 2, our motivating ex-
ample. Suppose that the buyer can perform multiple experiments in sequence; for example,
suppose that the buyer can perform any sequential experiment of any length. By Example
12, the results of Ravid (2020), here detailed by Propositions 1 and 2, extend to the case of
sequential experiments. It is easy to see that our Proposition 3 also extends to the case of
sequential experiments. Thus, in games with information acquisition, the rational inatten-
tion model and the experimental approach we propose are substantially different, regardless
of whether players can perform one-shot or sequential experiments.

As a special case of their framework, Bloedel and Zhong (2020) study what happens
when the flow cost depends only on the per-period experiment, as in (13). Their find-
ings are broadly consistent with ours. In particular, under the hypothesis that h is locally
quadratic, they show that no bounded, non-trivial, uniformly posterior separable cost func-
tion is consistent with a primitive model of sequential information acquisition (Bloedel and
Zhong, 2020, Proposition 3).2! Our Proposition 12 complements their result, as we put no
functional form assumption on h, generalize beyond uniform posterior separability, and rely
on a different argument for the proof. In their appendix, Bloedel and Zhong also point out
that concavity in the prior is a necessary condition for a cost function on random posteriors
to be consistent with a primitive model of sequential information acquisition.

Our analysis leaves open the questions of what cost functions are experimental of order
n > 2. Morris and Strack (2019) provide an answer in a specific environment. They consider
a binary state space © = {0, 1}. The decision maker observes the evolution of a Brownian
motion whose drift depends on the state. The flow cost is a function of the passage of time,
which is of course independent of the evolving beliefs of the decision maker. Morris and

Strack characterize the induced cost function on random posteriors: given 7 € (0,1),
CMs(B(T(', P)) = (1 — W)DKL(P()le) + FDKL(Pl”Po).

Their result is consistent with our findings. First, the hypothesis of Proposition 12 is not

21'When there are al least three states, their result holds for all non-trivial uniformly posterior separable
cost functions, bounded or unbounded.
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satisfied. For all m € (0,1), ears((1 — 7)do 4+ m01) = oco. Thus
h—>n11 eyms((1—m)dg + mé1) = 0o > 0.

Moreover, cyrs(B(m, P)) is affine in 7, so, in particular, concave in 7.

In Morris and Strack (2019), the arrival of information follows a continuous-time process,
Brownian motion. Bloedel and Zhong (2020) re-derive Morris and Strack’s result in a
discrete time model with flexible information acquisition. In the language of our paper,
they consider a binary state space © = {0,1} and a primitive cost function h : &€ — [0, 00]
given by

h(P) = max{ Dk (P F1), Drr(FollP1)}-

They show that cprg = cp (Bloedel and Zhong, 2020, Proposition 3). To date, that is the

only non-trivial, complete solution of the problem we discuss in this section.

8 Concluding remarks

Producing vs processing information. The literature distinguishes between two main
activities of information acquisition: information production and information processing.
Borrowing an example from Sims (2010, p. 161), finding whether a well test indicates oil
is an instance of information production; reading a report on the well test is an instance
of information processing. These two activities are obviously very different, but we believe
that our framework is rich enough to represent both.

In the case of information production, the state 6 € {o0il, not} represents whether there
is oil in the field or not. An experiment P represents a particular choice of well test, with
associated monetary cost h(P). In the case of information processing, the state § € {yes, no}
represents whether it is reported that there is oil in the field or not. An experiment P
represents a level of attention in reading the report, with associated psychological cost
h(P). In the case of information production, information acquisition is a tangible activity
with a pecuniary cost. In the case of information processing, information acquisition is an
“as if” story to model limited attention.

Ultimately, it is an empirical question whether the framework we propose is a good
representation of these two activities. On a theoretical level, however, we claim that there
are advantages in the experimental approach we propose, regardless of whether the decision
maker produces or processes information. A proof-of-concept is information acquisition in
games. In Ravid (2020), the buyer’s cost of information can have both pecuniary compo-
nents (e.g., consulting fees) and psychological components (e.g., mental effort to understand

a complex contract). As we show in our leading application, the experimental approach can

39



substantially simplify the analysis of the buyer’s information acquisition problem and of the

strategic interaction with the seller’s incentives.

Information and non-common priors. The normalization map p — p* is a central
object of our analysis. It admits the following multi-agent interpretation: Consider two
agents with full support, non-common priors 7 and 7*. Given a common experiment P, the
agent with prior 7 ends up with random posterior ; = B(w, P) and the agent with prior 7*
ends up with random posterior p* = B(7*, P). As we detail in Example 3, given signal x,

the posterior beliefs p, and p}, are related by

o O (0)/7(0))
P = Y ) ()

The same relation pops up in many papers on information economics with multiple agents

and non-common priors. Most recently, the relation has been used by Alonso and Camara

(2016) to study Bayesian persuasion with heterogenous priors; see also Board and Lu (2018).

The choice of the regularization scheme. We can envision multiple ways to “regular-
ize” a cost function ¢ and make it experimental. We believe, however, that the particular
scheme ¢ — c¢* we propose has several advantages, especially for applications. First, it
is often easy to compute ¢* starting from knowledge of ¢ (see Examples 4 and 5). Sec-
ond, ¢* inherits some of the main properties of c—for example, if ¢ is canonical, then c*
is canonical; if ¢ is posterior separable, then ¢* is posterior separable (see Section 5 in the
online appendix). Third, the regularization scheme ¢ — ¢* works particularly well for the
widespread entropic specification cg. As shown by Matéjka and McKay (2015), when the
cost of information is cg, the behavior of the decision maker follows a logit rule. The logit
rule is one of the main tools in applications of rational inattention. As we show in Lemma
5, when the cost of information is ¢}, the behavior of the decision maker also follows a logit

rule.

The choice of the topology for experiments. In choosing a topology for experiments,
we identified £ with the function space A(X)®. The choice is motivated by the important
case in which signals provide action recommendations. If A is a finite set of actions and
X = A, then it is convenient to identify & with A(A)®, a convex subset of a Euclidean
space. With this identification, the primal information acquisition problem can be solved
as a finite-dimensional convex program (see Example 9).

The literature has considered other topologies for experiments, which often violate the

identification between £ and A(X)®. For example, in statistical decision theory it is com-
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mon to adopt the following notion of convergence: a sequence of experiments (F,) converges
to P if the sequence of meta-posteriors (B(7*, P,,)) converges to B(n*, P). This notion of
convergence does not distinguish between experiments that are Blackwell equivalent. Thus

it allows to identify £ only with a quotient space of A(X)®.
Appendix

A Properties of the Bayes map

We review some properties of the Bayes map B : A x £ — A? that we use throughout the
appendix. Most results are known in statistical decision theory; they can be found scattered
in monographs such as Torgersen (1991). For the reader’s convenience, here we provide a
self-contained presentation. We present results first; proofs follows in Section A.1.

We start by discussing the algebraic properties of B. Let Bp : A — A? and B, : £ — A?

be its P-section and m-section, respectively.
Lemma 7. (i) The range of By is A2. (ii) The function Bp is injective.

Property (i) can be decomposed into two parts. First, (i) states that the range of B is
included by A2. This is an expression of the so called “martingale property” of Bayesian
updating: the expected posterior is equal to the prior, i.e., the barycenter of B(w, P) is 7
itself. Second, (i) states that A2 is included by the range of B;. It comes from the richness
assumption on the set of experiments. Properties (i) and (ii) imply that the map p — f is
the (left) inverse of Bp.

By Lemma 7 every random posterior is generated by some experiment. In particular,
A ={B(m,P):Pcfand e AL};

that is, Ai consists of all random posteriors that can be induced, via experimentation, by
some prior with full support.

We turn to the ordinal properties of the Bayes map. Via this map, the Blackwell and
convex orders are related in the next result, which extends to priors with full support a

classic result for uniform priors.

Lemma 8. For any P,Q € &, the following conditions are equivalent:
(i) Py Q;
(ii) [ (dP/dN)dAX > [+ (dQ/dN)dX for all ¢ € Cs(RY);

(iti) B(mw, P) =cy B(m, Q) for some m € Ay ;
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(iv) B(m,P) = B(m,Q) for allme AL.

An implication of this result is that, for all 7 € Ay and p € A2, the set B! (i) is
an equivalence class in the Blackwell order. When 7 does not have full support, we only
have that (i) implies (iv). Since sublinear functions are positively homogeneous, the value
of the integrals in (ii) is independent of the control measure A (indeed, the Blackwell order
depends only on the distribution of the likelihood ratios).

The proof of Lemma 8 builds on the following simple result that we will often use
throughout the appendix. To state the result, let © = {1,...,n} and w = (w1, ..., wy,) € R7.
A self-map 1) — 1, on the space Cs(R"}) is defined by

U (21, ey 2n) = ¥ (w121, ..., Wy 2n) Vz e RY.

Denote by ¢ € Cs(R") the sublinear extension of ¢ € Cv(A):

PR (0L (s 58) if Siz>0,

0 otherwise.

Lemma 9. If u = B(w, P), then for all ¢ € Cv(A)

[ o ant) = [ . (i]jgxf) aA(@).

The result can be read as a change of variables which relates integrals over posteriors

to integrals over signal realizations. The result generalizes to the case in which ¢ : A —
(—00, 00] is convex and lower semicontinuous.

We now discuss the convexity properties of the Bayes map.
Lemma 10. For a € [0,1], m,p € A, and P,Q € &, the following conditions hold:
(i) aB(r, P) + (1 - a)B(p, P) =ew Blat + (1 - a)p, P);
(ii) aB(m,P)+ (1 —a)B(m,Q) =¢ B(m,aP + (1 — a)Q).
The next technical lemma constructs regions where the Bayes map is affine.

Lemma 11. Let 7 € A and p,v € A2, There are P,Q € £ such that (i) B(r, P) = p, (i)
B(m,Q) = v, and (iii) B(r,aP + (1 — a)Q) = au+ (1 — a)v for all a € [0,1].

The proof of the result uses the richness of the signal space to construct P and ) with
the desired properties.

We conclude the section by addressing the continuity properties of the Bayes map.
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Lemma 12. (i). If m, — © and B(n*, P,) — B(7*, P), then B(m,, P,) — B(w, P).
(ii). If P, — P and B(w, P,) — u, then pu >, B(w, P).

The next technical lemma constructs regions where the section B, is continuous.

Lemma 13. Let (j1,,) be a sequence in A2 with y, — . There is a sequence of experiments
(P,) such that (i) P, — P, (ii) B(w, P,) = uy for every n, and (iii) B(w, P) = p.

The proof of the result uses the richness of the signal space to construct (P,) and P

with the desired properties.

A.1 Proofs

Proof of Lemma 7. (i). If 4 = B(m, P), then

g — W(e)d&((f)) AP-(2) — (8 dpe(l‘)d)\ — (8
O g = | i 2 =0

Conversely, for u € A2, take the standard experiment P : © — A given by dP/du = p/[.
By hypothesis P belongs to £. It is easy to verify that B;(P) = p. Overall, we conclude
that A2 is the range of B,.

(ii). Bp(m) = Bp(p) implies Bp(m) = Bp(p), which implies 7 = p by (i). [

Proof of Lemma 9. If P is simple, then p has finite support and

S et = 3 o) Prle) = S0 (TS T )

=> ¢ (MmPUx), .., T Pu(2)) = > o (Pr(), .0, Pul)) .

If P is not simple, the argument is easily extended via the densities dP/dA\. |
Proof of Lemma 8. We first prove that (ii) and (iii) are equivalent. If 7 € A, then
Cs(R®) = {ihy : ¥ € C5(RD)}. Moreover, Cs(R?) = {¢3 o€ CU(A)}. Thus Cs(R9) =
{ggﬂ NS CU(A)}. The equivalence of (ii) and (iii) then follows from Lemma 9. Since the

choice of m € A} was arbitrary, we deduce that (ii)-(iv) are equivalent.
A classic result establishes the equivalence of (i) and (iii) for the uniform prior 7* (see,
e.g., Blackwell and Girshick, 1954, p. 328, for the finite case and Theorem 1 of Le Cam,
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1996). So, we can write

PibQ<:>B( *P)>_CUB( *Q)

<:>/ < ) /Xw <i&2> dX Vi € Cs(RY)

<= B(m, P) = B(m, Q)

where the last two equivalences follow from the equivalence of (ii) and (iii), in the first case

when applied to 7*. |

Proof of Lemma 10. (i). Let u = B(ar + (1 — a)p, P), vy = B(w, P) and v2 = B(p, P).
For every ¢ € Cs(RY)

waﬂJr(lfa)p(p) < 04%(1’0) + (1 - 04)%(19) Vp € A.
Thus, for all ¢ € Cv(A), from Lemma 9 we obtain
R dP P ~ (dP
¢pd :/qbwr —a) < )d)\ /¢7T< >d)\+1—a/¢<>d)\
/A H X +(1 d) ( ) X P\ dx
= a/ ¢pdvy + (1 — a)/ pdvg = / od(av) + (1 — a)we).
A A A
We conclude that avy + (1 — a)ve =¢y p.

(ii). Let p = B(m,aP+ (1 — a)Q), v = B(w, P) and vy = B(m, Q). For all ¢ € Cv(A),

from Lemma 9 we obtain
B ~ (d(aP+ (1 —a)Q) B A dj d@
/Acbdu—/qﬁw( = >d/\—/¢w(ad/\+(1 >dA)dA

/%( P) d)\+(1—a)/x¢37r<((i§> dA

=a/A¢du1+<1—a>/A¢du2=/A¢d<au1+<1—a>u2>-

We conclude that avy + (1 — a)ve =cy p. [ |

Proof of Lemma 11. Let P,Q € & such that B(x,P) = pu and B(r,Q) = v. Let
Y = {01} and Z = X x Y. Define P,Q : © — A(Z) by Py(A x {0}) = Py(A) and
Qo(A x {1}) = Qg(A). Tt is easy to check that B(w, P) = pu, B(w,Q) = v, and B(r,aP +
(1-a)Q) =au+(1—-ap?

Being X and Z Polish spaces, there is a Borel isomorphism 7' : Z — X. Define P,Q € £

2 Intuitively, aP+ 1- a)Q represents the experiment where a coin with bias « is tossed and, depending
on where the coin lands, experiment P or Q is performed.
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by Pp=PjoT ' and Q =QoT~!. We have
(aPr+(1-)Q) 0T =0 (BoT ) +(1-0) (QoT™") = aPy+ (1 - a)Qs.

Thus B(m, P) = p, B(7,Q) = v, and B(m,aP + (1 — a)Q) = ap+ (1 — a)v. [

Proof of Lemma 12. (i). For every n, take u, = B(m,, P,) and u; = B(r*, P,). Take
also u = B(m, P) and p* = B(n*, P). Being A2 compact, we can assume without loss of
generality that B(m,, P,) — v for some random posterior v. Let ¢ € Cv(A). From Lemma

9 for every n

[ 00 dm0) = [ 6r@Pu@)/aN@) M) = [ G220 i)

The map (p,p) — ) = (p) is jointly continuous. Thus, from p;; — p*, we obtain

/qbdz/:lim/ ¢dynzlim/ é@du;:/g?)w*du*:/gﬁdu.
A noJA noJa T AT A

Since ¢ is arbitrary, we conclude that p ~, u, ie., p=v.
(ii). Set v = B(m, P) and take ¢ € Cv(A): we wish to show that [, ¢du > [, o dv.
Let © ={1,...,k}and p = (p1,...,pr) € A. Assume that ¢ is piecewise linear (the general

case follows by approximation): there exists a finite set Z C R* such that

For every n, define i, = B(m, P,). We have [, ¢du, = [, ¢dp and

= max z~7dpn’i(w) x
J o) dnato) = | (ZGZ B )dA( )

Let B(X,Z) be the space of bounded measurable functions from X into Z. For every

feB(X,2)
dP,i(x
/){(I?Eazx i Zj———" () )d)\ >E /fz )P, i(x

Conversely, by the Measurable Maximum Theorem (Aliprantis and Border, 2006, Theorem
18.19), there is a measurable function f, : X — Z such that

[ (e 5 i
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Let C(X, Z) be the space of continuous functions from X into Z. By a standard approxi-

mation argument, there is a sequence (fy ) in C(X, Z) such that

> /X foil@) APyslx) = sup 3 /X Frma(@) dPrs(2).

Overall, we obtain for all n

[ 60) () = sup > JRCLNE

feC(X,7)

The analogous equality holds for p and P. Thus

J,00)dup) =t sup > | f@)apite

" feC(X,Z)
> sup hm / fi(z)dPy, i(z
el
= sup /fZ )dP;(x /qﬁ )dv(p
39D
|
dPn _ P

Proof of Lemma 13. For every n, let P, be the standard experiment given by g3 ==

Let P be the standard experiment given by dP = L. We have B(m, P) = pand , for every
n, B(w, P,) = pn. Moreover, for every contlnuous functlon p:A—>Rand €06

/gf) )dP,0(p /¢ Z)) dpn(p)
%/Aé(p)igdu(p)Z/ASD(P)dPH(P)‘

Thus P, — P. [ |

B Proofs of the results in the main text

Proof of Lemma 1. Reflexivity and transitivity are inherited from the Blackwell order.
(i). “If” Let P* P” € £ such that B(f, P*) = p and v = B(p, P¥). By hypothesis,

{Pe&:B(,P) =co n} C{Q € £ : B(r,Q) =y V}.

Thus B(v, P*) = B(7,P"). By Lemma 8 there is a stochastic kernel K such that Py =
KP} for all € suppv. Define Q € € by Qg = KP} for all 0. We have P* =, Q and
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B(7,Q) = v (being Qo = Py for all § € suppv). Since the choice of P* if arbitrary, we
conclude that p >¢; v.

“Only if” Let u,v € A? such that y =, v. Take P, P* € £ be such that B(fi, P) =, pt
and p = B(f, P*). By Lemma 8 there is a stochastic kernel K such that P} = K Py for all
6 € supp fi. Define Q" € € by Qp = K Py for all §. We have P >, Q" and B(i,Q’") = p.
Because p =, v, we can find Q € £ such that Q" =, Q and B(7,Q) = v. Thus P = Q,
which implies B(v, P) >, v by Lemma 8. Since the choice of P is arbitrary, we conclude
that

{Pc&:B(P) e 1} C{QEE:B(,Q) =eu v}.

(ii). The proof of the “if” statement is straightforward. To prove the “only if” statement,
suppose that p ~¢, v. By (i),

{Pe&:B(iP)zewpt ={Pc&: B0, P)zc v} (14)

We claim that i and ¥ have the same support or u = 05 and v = d5. By contraposition,
suppose that p # 05 and there is 6 such that (6) > 0 = v(#). Take P such that B(a, P) =
w. If B(v, P) %ey v, then (14) is false and we are done. Assume therefore that B(v, P) =, v.
Since p1 # 0y, there is 7 € © such () > 0 and Py # P;. Let @ be equal to P except for
Qo = P;. Since v(0) =0, B(7,Q) > v. Let m € A such that 7(0) = n(7) = 1/2. Since
Py # P; and Qp = Q-, B(w, P) ¢, 0 = B(m, Q). By Lemma 8, B(, Q) % B(i, P) = p.
This negates (14): we are done.

Now consider the case in which i and ¥ have the same support. Let P* and PY be
experiments that generate p and v. By (14), B(a, P”) =& B(i, P*) and B(v, P*) =,
B(v, P¥). Since i and © have the same support, it follows from Lemma 8 that B(a, P¥) =
B(ji, P*) and B(v, P*) = B(v, P¥). This shows that

{Pe&:B(p,P)=ut={Pecé&:B(p,P)=uv}.
If instead p = d; and v = 65, then trivially
{Pe€€&:B(p,P)=p}={P €&: P is uninformative} = {P € £ : B(v, P) = v}.

This concludes the proof of the “only if” direction.

(iii). Assume that g =, v. Take P € & such that B(f, P) =, p. Being p = v, we
have i = v and B(i, P) = B(v, P) =¢ v. It follows from (i) that pu >=., v. To prove the
converse, take P* € £ such that B(f, P*) = p. Because p =¢, v we have B(v, P*) =¢ v
by (i). Since i = v, we conclude that u = B(v, P*) =, v. [ |
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Proof of Lemma 2. (i) implies (ii). Let P >, ). We want to show that, given any
m,p € Ay, we have B(m, P) ¢y B(p,Q). In view of Lemma 1-(i), B(w, P) =cz B(p, Q) if
and only if

B(n, P') = B(r, P) = B(p, P') = B(p,Q) WP €€. (15)

Let P’ € € be such that B(m, P') »=, B(w, P). Since 7 has full support, P’ =, P by Lemma
8. This in turn implies P’ = Q (being P =} Q). Thus B(p, P’) =, B(p, Q) as desired.
(iii) implies (i). Let P,@Q € €. Assume B(w, P) =¢, B(p, Q) for some m, p € A;. Since
v 18 reflexive, we have B(w, P) >, B(m, P) and so, by (15), B(p, P) >=c B(p,Q). By
Lemma 8, this implies P =3 @, having p full support. Since (ii) trivially implies (iii), this

completes the proof. |
Proof of Lemma 3. Let P and @) be the standard experiments given by ?T]; = % and
% = % The experiments P and () generate y and v, respectively. By Lemma 2, we have
1 =z v if and only P =3 Q. The desired result follows from the variational representation
of the Blackwell order, Lemma 8-(ii). [

Proof of Theorem 1. (i). If ¢ is experimental, then it is invariant under ~, by Lemma
1-(ii). Conversely, suppose that c¢ is invariant under ~,. Since > is reflexive, it follows
from Lemma 2 that, for all P € £ and 7, p € A4, B(w, P) ~¢z B(p, P) . Since c is invariant

under ~,, we then have

¢(B(x,P)) = ¢(B(p, P)). (16)

Fix 7 € A} and define hy : £ — [0,00] by h; (P) = ¢(B(mw, P)). By Lemma 8, h, is
invariant under ~. Along with (16) and the invariance of ¢ under >, we obtain for each
pe A2

he(PY) > inf{hy(P) : B(fi, P) = i} = inf{c(B(r, P)) : B(fi, P) = 1}

— inf{e(B(f P)) : B(fi, P) = i} = ¢ () = ¢ (B(fi, P))
— c(B(x, P*)) = ha(P")

where PH satisfies B(f, P*) = pu. We conclude that
inf{hr(P): B(fi,P) = p} =c(u)  Vpe AL

This shows that ¢ is experimental and it is rationalized by h,. Note that = was arbitrarily
chosen in Ay . In particular, we can choose the uniform prior 7*.

Finally, if o’ : € — [0, 00] is invariant under ~} and induces ¢, then by Lemma 8

hy(P) = ¢(B(rm, P)) = inf{h(Q) : B(7,Q) = B(m, P)} = I (P).
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Thus ' = h, as desired.
(ii). Suppose that h is Blackwell monotone. Trivially

Ch(:u) > lnf{h(P) : B(laap) = :UJ}

Now take P, P* € £ such that B(ji, P) =, p = B(ji, P*). By Lemma 8, P =, P*. Being h
Blackwell monotone, h(P) > h(P*). Since the choice of P is arbitrary, we obtain

cn(p) < inf{h(P) : B(i, P) =c, p}.

We conclude that
en() = nf{h(P) : B(, P) =eo p}.

It follows from Lemma 1-(i) that ¢ is monotone in the experimental order.

(iii). Suppose that ¢ is monotone in the convex order and experimental. By (i), ¢ = ¢p,..
Since ¢ is monotone in the convex order, h. is Blackwell monotone. By (ii), ¢ is monotone
in the experimental order. Conversely, if ¢ is monotone in the experimental order, then c is

monotone in the convex order by Lemma 1-(iii) and experimental by (i). [

Proof of Corollary 1. Let ¢ be experimental and suppose that (i) holds. Take a random
posterior p € Ai: we want to show that c¢(u) = 0. Let P* be an experiment that generates
p—that is, such that p = B(p, P*). By Lemma 2 we have B(ji, P*) ~c; B(m, P*) for all

m € AL. Being c invariant under ~.; (Theorem 1), we obtain
() = (B(fi, P") = c(B(r, P"))  Vm€ Ay,
Thus, it follows from (i) that

= i B(m, P*)) =
c(p) ﬂ(egglc( (m, P*)) =0

as desired. This shows that (i) implies (ii). The other implication is trivial. [ |

Proof of Corollary 2. Define E : C** — H® by E (¢) = h.. The functions D and FE are
well defined by Theorem 1-(i). For every P € £, we have

he, (P) = cn(B(7*, P)) = h(P)

Ch

where the last equality follows from A being invariant under ~j. In addition, for every
uE Ai we have
Che(p) = he(P*) = c(B(x", P*)) = c(p).
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where first and last equality follow from h and ¢ being invariant under ~; and ~.;. We
conclude that D is bijective and E = D~!. The cases where h and ¢ are monotone in >

and =, follow from Theorem 1-(ii) and Theorem 1-(iii). [

Proof of Lemma 4. Fix u € A2. Let P* € £ such that B(fi, P*) = p. Set u* = B(r*, PH).
Since the Blackwell order is reflexive, P* ~;, PH. By Lemma 2, u* = B(n*, P*) ~¢,
B(fi, P*) = p. Such p* is unique. Indeed, let v* € A2, such that g ~, v*. By the
transitivity of ~e;, we have u* ~¢, v*. Since they have the same barycenter 7*, by Lemma
1-(ii) we have p* ~¢, v*, so that u* = v*. We conclude that the map A2 3 p+— p* € AZ.
is well defined.

(i). Let p,v € Ai. By the transitivity of >=.;, we have v =, u if and only if v* =, u*.
By Lemma 1-(ii), we have v* =, p* if and only if v* =, p*.

(ii). This follows from ¢ being invariant under ~, (Theorem 1). [

Proof of Corollary 3. Let p,v € A2. If v ~, p, then, by Lemma 4-(i), v* = p* and so

By Theorem 1 the cost function ¢* is experimental. Assume, in addition, that ¢ is monotone

in the convex order. If v =, u, then v* =., u* by Lemma 4-(i). Thus

¢ () = (') = e (i) = ¢ (1),

being ¢ monotone in the convex order. |

Proof of Lemma 5. The buyer’s problem of best responding to ¢ can be rewritten as
> B(x)Pi()a™(t) = kY Drr(Py]|Por)o* (2).
t

That is formally equivalent to a rational inattention problem where the utility from purchas-
ing the good is (”;f)(g)(t), the buyer’s prior is 0*, and the cost is ¢(B(c*, P)) = kcr(B(c*, P)).
Thus we can apply the results of Matéjka and McKay (2015) and obtain the desired logit

representation. [

Proof of Proposition 4. Let (o, P, ) an equilibrium with 5, > 0. By Proposition 3,

o(2v) > 0 and o(2) > 0. The seller’s indifference condition between ¢t = 2 and ¢t = 2v is

2v
?BQJ = 21}621) — 1824) = 3621)-
3 3
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From Proposition 5, 8, = B,+. Thus
1 1 1 1 1
552?” =+ gﬁ’u + 5521; = Ba* <~ iﬁ%” + 5521} = /BO'*
It follows from B2, = 339, that
3

3 1
B%U = 560* and /821) = 5&0*‘

In particular, the seller is indifferent between all offers. From Proposition 5,

(v 23:)?)(27@( v) (v—2v)o(2v)

e ko ( ) BO'* 3 e ko*(2v) /80'* 1
_2v 2v = 750’* and (1; 2v)o(2v) = 7/80'*'

(=) (%) 2 SR @ B+ 1 — B 2

e ka*(%) Bor + 1 — By
Simple algebra shows that
3v
( ) 1;( ) (v—2v)o(2v)
3

kot (3F) 35 V23 S (1L Y2 Lq_g.
e (1 2@, > 5 (1= Bo+) and e 1 250 2(1 Bo+)-
Thus B+ € (0, %) Simplifying further, we obtain

3’U k 3(1 - BU*) k 2 —_— BU*
0(3) Uog 2 — 305 an 7(20) 3v Ogl—ﬁg*

This concludes the proof of the first part of the proposition.
Now take z € (0, 2) such that
k.o 31—z k

2—z
| L <1 17
L8 93, T3, 87 ;S (17)

Define o € A(T) by

k

v(1—2) .
o(t) = o= t) log ift#wv

t—vz

(1 z) _

3z

log log f:; ift =w.

y (17), o is well defined. Simple algebra shows that

(w=t)o ()
e ko* (i)

ZU CEDEO) =1

e kW z4+1—z

That is the first order condition of the maximization problem in Proposition 5. Thus we
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can find a best response to (P, 3) to o such that S, = z. In addition, for all t € T,

(v—t)o(t)
e ko*(t) z v
Bt =~ -1
e k" z4+1—2

Therefore the seller is indifferent between all offers: o is a best response to (P, 3) as well.
We conclude that (o, P, 8) is an equilibrium with 5, > 0 and S« = z.
Finally, consider the function f : (0, %) — R4 given by
k. 31-2) k 2—2z

= —log ——= + —1 .
1) vOg 2—3z+3v0g1—z

Note that f is continuous and strictly increasing. In addition,

i k 3 k .
;%f(z)—zlogi—FS—vlogQ and j;r%f(z)—m.

As shown above, if (o, P, 8) is an equilibrium with S, > 0, then

lim () < f(Bp) = <§v> +o() < 1.

Conversely, if lim,_,o f(z) < 1, then by Brouwer’s fixed point theorem there exits z such
that f(z) < 1. As shown above, this implies that there exists an equilibrium (o, P, §) with
Bs > 0. The condition lim,_,o f(2) < 1 is equivalent to k < W. [ |

Proof of Proposition 5. (i). Let € [0,1] and u, v € A2. By Lemma 11 we can choose P*
and P¥ generating p and v, respectively, such that B(m,aP* 4+ (1 —a)P") = ap+ (1 — a)v.
Being h Blackwell monotone, cp(u) = h(PH*), ¢p(v) = h(PY), and cp(ap + (1 — a)v) =
h(aP* + (1 — a)P"). It follows from the convexity of h that

cplap+ (1—a)v) = h(aP*+(1—a)P”) < ah(P*)+ (1 —a)h(PY) = acp(p) + (1 — a)cp(v).

We conclude that ¢, is convex.
(ii). Let o € [0,1] and P, Q € £. Because ¢ is monotone in >, by Lemma 10

c¢(B(r*,aP + (1 —a)Q)) < c(aB(r*,P) + (1 — a)B(7*,Q)).
In addition, because c is convex on A2,

c(aB(r*,P)+ (1 —a)B(7",Q)) < ac(B(n*, P)) + (1 — a)e(B(7*,Q)).
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We conclude that

he(aP 4+ (1 — a)Q) = ¢(B(r*,aP + (1 — a)Q))
< ac(B(m*,P))+ (1 — a)e(B(7*,Q)) = ah:(P) + (1 — a)h(Q).

We conclude that h. is convex.
(iii). Since c is convex on A2, and c* agrees with ¢ on A2, we have that c* is convex
on A2,. By (ii) this implies that h. is convex. Because cj,,, = ¢* (Corollary 2), it follows

from (i) that ¢* is convex on each A2. [

Proof of Proposition 6. (i). Let (i) be a sequence in Ay with limit p. For every n, we
take v, such that v, ~¢; i, and 7, = . Being A% compact, we can assume without loss
of generality that the sequence (v,) converges to some v € A%. Note that i, — p. Thus
v = i by Lemma 12.

By Lemma 13, we can choose a sequence (P,) in £ with limit P such that B(n, P) = v
and, for every n, B(fi, P,,) = v,. Being h Blackwell monotone, ¢, (v) = h(P) and, for every
n, cp(vn) = h(P,). Since u = v, we have ¢;(u) = ¢p(v). Since ¢p is monotone in the
experimental order, for every n we have ¢y (un) = cp(vy). Then it follows from the lower
semicontinuity h that

lin%inf cn(pin) = limninf cp(vn) = lin%inf h(P,) > h(P) = cp(v) = cp(p).
We conclude that ¢j, is lower semicontinuous on Ai.

(ii). Let (P,) be a sequence in € with limit P. Because A2, is compact, we can

assume without loss of generality that B(7*, P,) converges to some pu. Because c is lower

semicontinuous on Afr*,
lim inf he(P,) = lim inf c(B(m™, Pn)) > c(p).
From Lemma 12 we have p =, B(7*, P). Thus, being ¢ monotone in >=.,, we have
c(p) 2 e(B(7", P)) = he(P).

We conclude that h,. is lower semicontinuous.
(iii). Since c is lower semicontinuous on A2. and c¢* agrees with ¢ on AZ., we have c*
lower semicontinuous on A2.. By (ii) we obtain that h. is lower semicontinuous. Being

¢h,. = c* (Corollary 2), by (i) the function ¢* is lower semicontinuous on AZ. [ |

Proof of Lemma 6. The “if” statement is trivial. To prove the “only if” statement, for
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every ¢ € Cv(A) and m € Ay we define

—maX/<z5 du(p) — c(u)-

HEAZ

By Theorem 2 of De Oliveira, Denti, Mihm, and Ozbek (2017), we have for every m € A
and p € A2

c(p) = sup /gf) )du(p) — V (o, ).

PpeCu(A

In particular,

0=c(:) = sup o(r)—V(é,7)

HECH(A)

We obtain the desired result by setting ®™ = {¢ — V (¢, 7) : ¢ € Cv(A)}. [ ]
Proof of Proposition 7. (i). “If” Assume that

() = sup [ (p) du(p) — sup (1) V€ A2,
YeW JA 2 YeEW

On each AY, the function c is the supremum of affine continuous functions p — 9 (p/7)

where 1) € U. Thus c is convex and lower semicontinuous on each A}. In addition,

(67) = sup v () = sup (1) =

Pew Pew

Thus ¢ is canonical.

“Only if” Assume that c is canonical. Take ®™ as in Lemma 6. From Corollary 3

() = <) = (') = swp_ [ Gp)an’(p)— sup_o(x) Ve AL
¢e<1>7f* peP™"

From Lemma 3, we have that for all ¢ € ®™ and u € A%r

/cb ) dp*(p /sbn ()Z/A&r* (Z) dp(p)-

The desired result follows by setting ¥ = {q?),r tp e DT }
(ii). “If” Assume that

h(P)—sup/ ¢<dP> dA\—sup(l) VP EE.

bew JrO dA bew

o4



For every p1 € A2, let P* be the standard experiment given by dP/du = p/ji. Then

p
enti) =) = sup [ 6 (2) dute) = sup v
Yev JA H Yew
By (i), the cost function ¢, is canonical. By Propositions 5 and 6, h., = h is canonical.
“Only if.” Assume that h is canonical. By Propositions 5 and 6, ¢ is canonical: take
¥ C Cs(R?) as in (i). Fix P € € and choose u* = B(7*, P). Because h., = h, we obtain

from Lemma 9 that

p dP
(P) = ento) = sup [ (L) duto) = supvit) =sup [ (GF) 0r= sup vl
pevJa T bew peva  \dA bew
The desired result follows. [ |

Proof of Proposition 8. The “if” direction follows by setting ¢™(p) = ¢ (%) Conversely,
suppose that ¢ € C™* is posterior separable. Take ¢™ as in Definition (8). To shorten
notation, we drop the superscript and write ¢ instead of ¢™ . From Corollary 3, for all
peA?,

() = (1) = e(u) = /A o(p) dir* (p) — ().

From Lemma 3, we have that for all 4 € Ai

/Aaﬁ(p) du* (p) Z/Aéw* (Wﬂ) du*(p)Z/Aéw* (i) dp(p).

The desired follows by setting 1 = ggﬂ*. |

Proof of Proposition 9. (i). For u € Ai let P* be the standard experiment given by

% = %. Being h Blackwell monotone, we have

enlyn) = (P = |

A

(8 (g) du(p) —¥(1).

From the “if” direction of Proposition 8 it follows that ¢, is posterior separable.
(ii). Assume c is posterior separable and take 1) as in Proposition 8. Take P € £ and

set u = B(7*, P). From Lemma 9 we obtain

rlP) =) = [ 0 () dute) - w1y = sup [ v () ax- vl

" YW

Thus h. is likelihood separable.

(iii). Let ¢ be posterior separable, take ¢™ as in Definition (8). To shorten notation,
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we drop the superscript and write ¢ instead of ™ . As in the proof of Proposition 8, we

see that ¢* is posterior separable with ¢ = gZ),r*. |
Proof of Proposition 10. “Only if” Define f : (0,00) — (—o0,00] by f(t) = (¢, 1).
Since 9 finite on Riojrl}, the range of f is included by R. Since ¢ is convex, f is convex as
well. For every P € £

- AP, (dPy/A dr,
h(P)+f(1)—/iP1>0d)\¢ (dPl/)\’1> dA+¢(1,0)/d£0 ey

APy, (dPy/A O f() / dPRy
= &1 dA+ ( lim 22 S0an
/ddz;l>0 e (dPl/A> * (ti‘?o t ) Jarm ar o dA

dA

dXx

— Dy(Py||P1). (18)

The desired result follows.
“If” Define v : Rio’l} — (—o00, 0] by

o f (&) if 2, > 0
w(ZO; Zl) =9 21 limy_ee @ ifzg>21=0
0 if 20 = 21 = 0.

The function v is called the perspective function of f (Hiriart-Urruty and Lemaréchal, 2012,
Section 2.2). It is a routine exercise to show that 1 is sublinear and lower semicontinuous.

Notice also that v is finite on Riojrl}. Reasoning as in (18), we see that

MP%1@w<ﬁ?fﬁ)dA—wm,

which means that A is likelihood separable. |

Proof of Proposition 11. To prove the result, it is enough to show that B(w, P*) = pu
implies V(P*) = W (u). Let ¢ € Cv(A) be given by
¢(p) =max » wv(a,0,c(u))p(0).

a€A

Because h and c are dual to each other, h(P*) = ¢(u). Thus,

V(P = A(%g vwammm@>ﬂmm
0

= max v(a,d,c T dPs(z) ) = » (dP(z) "
B /X <a€A 9 G cir(?) dA(w)) A /X(z)Tr <d>\(l‘)> A=)




It follows from Lemma 9 that

[ b (%) axe) = [ o) duts) = W (o).

We conclude that V(P*) = W (u) as desired. [ ]

Proof of Proposition 12. It is obvious that (ii) implies (i), so we focus on the other
implication. Given that the state is binary, we identify A and the unit interval [0, 1] under
the convention that = € [0, 1] is the probability that 6 = 1.

By (i), we can assume without loss of generality that

lim ¢ ((1 — 7)dg + 1) = 0. (19)

T—1

The random posterior (1 — 7)dy + md1 corresponds to the case in which the agent learns the
state perfectly: with probability 1 — 7, the posterior belief is p = 0; with probability 7, the
posterior belief is p = 1.

Let £ the set of sequential experiments of any length: £ = J;2 ; £". We denote by
P a generic element of £°. For every n =1,2,...,00, let E™ C E" be the set of sequential

experiments that perfectly reveals the state:
En = {P"e€&":B(r*,P")=(1—7")dg+ 7"}
By hypothesis, ¢ is experimental of order n = 1,2,...,00. Thus, for every = € (0, 1),

c(1=m)bg+mé) = inf h(m,P")= inf (1 —7)h(0,P")+ wh(1,P").
pregn pregn

Claim 1. For every € > 0, there exists P" € £" such that h(1, P™) <e.

Proof of the claim. By (1), for every m € (0, 1) sufficiently close 1 there exists P™™ € En
such that

h(m, P < g
Since h(w, P™™) = (1 — m)h(0, P™™) 4+ wh(1, P™™) and h(0, P™™) > 0, we have

wh(1, P™™) < h(r, P,

Thus, we can choose 7 sufficiently close to one such that

h{m, PM7) € o

h(1, P™7) < —<
T 27

o7



The desired result follows. O

Let P € £ be an uninformative experiment such that h(P) = 0. For P" € £", 7 € (0,1),
and A € (0,7), define Q™ € ™ inductively as follows:

® Qpo = Ppo

4T @ _
o if W Z e then Q:L.ifl = Pmifl

4T @) —
® lfnglr_liM < ) then Q$t—1 = P.
In words, @™ is the same as P" with the addition of the following stopping rule: if, after
any history of signals 2'~!, the posterior belief that the state is one is less than A, then stop

experimenting. Define

dpP (2 )
AP (zi-1)

Qi (=)
WT
dQ;_ (.%'Z 1)

Ppi-1 = T and qpi-1 =

Given sequential P™ and prior m, p,i-1 is the posterior belief that the state is one after
history of signals z'~!. Given sequential Q™ and prior 7, g,i-1 is the posterior belief that the
state is one after history of signals 2'~!. The random posterior B(r, P") is the pushforward
of P! under 2" + pyn. The random posterior B(mw, Q") is the pushforward of Q7 under
" > pn.

Claim 2. For Q7-almost all ™, gzn ¢ [A\,1 — Al
Proof of the claim. By construction of Q"
Qr({z" s gz € M1 = Al}) = PP({z" : pam € A, 1 = AJ}).
Since P™ reveals the state perfectly,
Pr({a" :pm € [N, 1= A]}) =0.
The desired result follows. O
Claim 3. M\h(m,Q™) < h(1, P™)

Proof of the claim. It is enough to show, for every i,

A h(Qui-1) dQT (2" < / h(Pyi1) dPI (20,
xi—1 i

o8



By construction of ",

A (@) A () = ) B (Quier) dQL (Y.

xi-1 {miflzqmi_l Z)\}

<n B Q) dQI (@)
{zi-t:q i1 >A}
= 7T/ h (sz‘fl) dPli_l(xifl)
{zi=lip 122}
< / h(Pyi-1) dPli_l(xifl).
xi—1

The desired result follows. O

Claim 4. For every m € (0,1), there exists a net (1)~ in AZ such that, as ¢ — 0,
u€ — (1 —m)dog + 71 and c(u€) — 0.

Proof of the claim. Fix m € (0,1). For every € > 0, choose P™* € E™ such that h(1, P™€) <
€2 (see Claim 1). Setting A\ = ¢, we can find Q™€ that satisfy the following conditions:

e For Q7 “-almost all 2", ¢5. ¢ [6,1 — €] (see Claim 2).
o h(m, Q") < h(1,P™) = € (see Claim 3).

Define p¢ = B(m, Q™). Then ¢(u€) — 0 as € — 0. Assume without loss of generality that,
for some pu € A%, € — p as € — 0. For every n € (0,1/2),

1((n, 1 —n)) < liminf p((n,1 —n)) < lminf p*([n,1 —n]) = 0.
e—0 e—0

By o-continuity, pu((n,1—mn)) — u((0,1)) as n — 0. Thus u((0,1)) = 0. We conclude that
= (1—m)dy + mé;. The desired result follows. O

We are ready to conclude the proof. Take any u € Ai. Choose (41)e>p in A% such that,
as € — 0, pu¢ = (1 — @1)do + 161 and c(u®) — 0 (see Claim 4). Then

c(p) < e((1 = p)do + fdr) < lim c(p) =0

where we use that ¢ is monotone in the convex order and lower semicontinuous. We conclude
that c¢(u) = 0, as desired. [

Proof of Proposition 13. Define 7, = ar + (1 — a)p. If B(wa, P") = B(mq, P), then
B(w, P") = B(m, P) and B(p, P") = B(p, P) by Lemma 8. In addition,

W™ (1, P") = ah™(r, P") + (1 — a)h"(p, P").
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Therefore we obtain
W (7as P") = acn (B(m, P)) + (1 — a)en (B(p, P)).
Since the choice of P" is arbitrary, we conclude that
cpn (B(ma, P)) > acpn(B(m, P)) + (1 — a)epn (B(p, P))

as desired. [

Proof of Proposition 14. Let ¢ € Cv(A) be defined by

acA

¢(p) = max » v(a,0)p(h).
0
We can rewrite the information acquisition problem as

—max/¢ ) du(p) — ().

HEAZ

Being £ rich enough to induce any random posterior,

max/ ¢dB(r, P) — ¢(B(r, P)).

peg

The quantity [, ¢ dB(m, P) is a convex function of 7 € Ay. Indeed, for m,p € Ay and
a € [0, 1], we have by Lemma 10 that

aB(m,P)+ (1 — a)B(p, P) =, Blar + (1 — «a)p, P).
We obtain that
oz/AqﬁdB(ﬂ,P) +(1-a) /AqﬁdB(p, P) > /Agde(om + (1 —a)p, P).
As a result, because ¢(B(m, P)) is a concave function of 7 € A, then quantity
/A ¢dB(m, P) — ¢(B(m, P))

is a convex function of # € A4. Since the supremum of convex functions is a convex

function, we conclude that V() is a convex function of m € A. [
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C Priors with partial support

In the main text we focus on full-support priors. The extension to arbitrary priors presents
no difficulties, as we sketch in this section. Recall that A? is the set of all random posteriors

u, with arbitrary barycenters i1 € A. As a consequence of Lemma 7, we have
A?={B(m,P):m€ A PcE}
A cost function ¢ : A% — [0, 00] is ezperimental if there is h : € — [0, 00| such that
() = inf {h(P): B(i,P) = u}  Vpe A (20)

We write ¢ = ¢, and say that c is induced by h.
To characterize experimental cost functions on the full domain A2, we introduce a sub-

order of >.,.

Definition 13. The sub-experimental order =, is a binary relation on A? defined by
W =gy v if, for every P € & such that B(ji, P) = p, there is @Q € & such that P ~j, @ and
B(7,Q) = .

Thus, pu =g, v if and only if
[P:B(i,P) = u} C{P: B(5,P) = v}. 1)

Moreover, p =g, v implies p =, v, but the converse may not hold. In view of Lemma
1-(ii), p ~gz v if and only if p ~¢, v. With a slight about of notation, denote by C the class
of cost function ¢ : A2 — [0, 00] such that ¢(d,) for all 7 € A.

Proposition 15. (7). A cost function ¢ € C is experimental if and only if is monotone in
the sub-experimental order and, for every pu € A% | there is a sequence (vy,) in Ai such that
c(vp) = c(u) and, for every n, vy =gy u. Moreover, ¢ is induced by a unique h. € H that

s invariant under ~y, given by
he(P) = c(B(7*, P)). (22)

(ii). If h € H is monotone in the Blackwell order, then cp, is monotone in the conver
order and
cn(p) = inf{h(P): B(fi, P) =cy u} ~ Vp € A%

(iii). A cost function ¢ € C is monotone in the convexr order and experimental if and

only if is monotone in the experimental order and, for every pu € A% | there is a sequence
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(vn) in A% such that vy, =ey p for every n, and c(vy) — c(u). Moreover, h. is Blackwell

monotone.

A function c : Ai — [0, 00] is monotone in >, if and only if is invariant under ~,.
Indeed, if 4 =5, v and p,v € Ai, then py ~c, v; conversely, if p ~¢p v, then p ~g, v.

Proposition 15 therefore generalizes Theorem 1.

Proof. (i). “Only if” Assume that c is experimental. It follows from (21) that ¢ is monotone
in the sub-experimental order. To see that also (ii) is satisfied, take h : £ — [0, 00] such
that ¢ = ¢;. For every u € A2 there is a sequence (P,) in € such that B(ji, P,) = p for
every n, and h(P,) — c¢(u). Define v, = B(7n*, P,).

We claim that v, =g, pu. Indeed, take @ such that B(7*, Q) = v,,. By Lemma 8 we have
Q ~yp P, thus B(j1,Q) = B(ji, P,) = p. By (21) we obtain that v, =g, pu as desired. Now,
being ¢ = ¢, h(P,) > ¢(v,). Moreover, being ¢ monotone in the sub-experimental order
(as shown above), c¢(v,) > ¢(py). Thus h(P,) — c(p) implies c(v,) — c(v).

“If” Define h : € — [0, 00] by
h(P) = ¢(B(r*, P)).

By hypothesis, ¢ is monotone in »=4,. Thus, p ~¢, v (which is equivalent to p ~s, ) implies
c(p) = c(v). By Theorem 1, c(u) = cp(p) for all € A2.

We claim that, for all u € A2, ¢, () > ¢(u). To see this, take an experiment P such that
B(f, P) = p. By construction, h(P) = ¢(B(7*, P)). By Lemma 8 and (21), B(7*, P) =gz p.
Being ¢ monotone in the sub-experimental order (by hypothesis), h(P) = ¢(B(7*, P)) >
c(p). Since the choice of P was arbitrary, cp(u) > c(p).

We now argue that ¢, () = ¢(p) and, therefore, that c is experimental. By contradiction,
suppose that c(u) # cp(p). As shown above ¢, (@) > ¢(p), thus it must be that ¢, (@) > c(p).
By hypothesis, there is a sequence (v;,) in A% such that c(v,) — ¢(p) and, for every n,
Vp =sz i. As shown above, ¢(vy,) = ¢p(vy) for every n, thus cp(v,) — (). Eventually
cn(p) > cp(vn), being that cp(p) > ¢(u). But ¢y is monotone in the sub-experimental order,
which implies ¢ (v,) > ¢ () for every n: contradiction.

(ii). Let h : £ — [0, 00] be monotone in the Blackwell order. By definition,

cn(p) = nf{h(P) : B(fi, P) =Zcv pi}-

To prove the opposite inequality, take P, P* € £ such that B(p, P) =¢ p = B(p, P*). By
Lemma 8, there is a stochastic kernel K such that, for all € supp i, P}’ = KPy. Define
Q € & by, for all 0, Q9 = KPy. Then P =, Q and p = B(i1,Q). Since h is Blackwell
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monotone, h(P) > h(Q). Since the choice of P was arbitrary, we conclude that
en(p) < nf{A(P) s B(f, P) = i}

Overall, we obtain
en(p) = nf{h(P) : B(ji, P) = ).

By Lemma 1-(i), ¢, is monotone in the experimental order. By 1-(iii), ¢; is monotone in
the convex order.

(iii). “Only if” Assume that ¢ is monotone in the convex order and experimental. By
(i), ¢ = ¢p,. Since ¢ is monotone in the convex order, k. is monotone in the Blackwell order
(Lemma 8). Thus, by (ii), ¢ is monotone in the experimental order. In addition, again by
(i), for every u € A? there is a sequence (v,) in A% such that ¢(v;,) — ¢(u) and, for every
N, Un =sg W4, which implies v, >¢, p.

“If” Define h : &€ — [0, 0] by

By hypothesis, ¢ is monotone in >,. Thus, by Theorem 1, ¢(u) = c5(p) for all p € A2.
Moreover, h is Blackwell monotone.

We claim that, for all € A2, ¢, (1) > ¢(i). To see this, take an experiment P such that
B(fi, P) = p. By construction, h(P) = ¢(B(7*, P)). By Lemmas 8 and 1, B(7*, P) > ¢y p.
Being ¢ monotone in the experimental order (by hypothesis), h(P) = ¢(B(7*, P)) > ¢(u).
Since the choice of P was arbitrary, cj (i) > c(p).

We now argue that ¢, (1) = ¢(p) and, therefore, that c is experimental. By contradiction,
suppose that c¢(u) # cp(p). As shown above ¢, (p) > ¢(p), thus it must be that ¢, (p) > ().
By hypothesis, there is a sequence (v,) in Ai such that c(v,) — ¢(p) and, for every n,
Un Zex . As shown above, ¢(v,) = ¢p(vy,) for every n, thus cp(v,) — c¢(p). Eventually
cn(p) > cn(vy), being that cp(p) > ¢(p). But ¢p is monotone in the experimental order,

which implies ¢y, (vy,) > ¢p(p) for every n: contradiction. O

The duality map and the regularization map extend to the case of priors with partial
support. Every function h € H that is invariant under ~; induces a unique experimental
cost function ¢y, : A2 — [0, 0o] defined by (20). Conversely, every experimental cost function
c: A% — [0,00] is induced by a unique function h. : € — [0, 00] that is invariant under ~;,
defined by (22). If ¢ € C is any cost function, then the function ¢* : A2 — [0, oo] defined by

c(p) =inf{c(v) : v =7" and v =4, p}
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is experimental. In particular, ¢ = ¢* if and only if ¢ is experimental.

Next we illustrate the regularization of rational inattention for general priors.
Example 13. Fix p € A? and denote by S C © the support of fi. We claim that
chl) = 7" (0)Dict (PLIIPL ) (23)
0eS
where P* satisfies B(fi, P*) = pi, and 75 € A is the uniform distribution over S.

To verify (23), take P € & such that B(fi, P) = p. Let Q,Q° € £ be given by

P, ifes P, ifo¢s
Q={" and  Q5=14 ' ?
Prs otherwise Pﬂgc otherwise.

Since B(ji, P) = p and Py = Qg for all § € S, we have B(ji, Q) = p. Simple algebra shows
that

hr(P) = hi(Q) + ha(Q°) = ha(Q) = 37" (0)Dicr, (PullPry )
0esS

We deduce that

Ch(n) = nf{hp(P) : B(P,i) = p} = inf {Zw*wwm (PollPry) : BP. i) = u} .
0eS

The condition B(f, P) = u = B(ji, P*) implies that

S O)Dxcr (PollPeg ) = S 7 (O)Dicr, (PYIIPL ) -

0csS 0esS

It follows that (23) holds. A
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