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Abstract

This work addresses the early phases of the elicitation of multiattribute value functions proposing a practical method

for assessing interactions and monotonicity. We exploit the link between multiattribute value functions and the theory

of high dimensional model representations. The resulting elicitation method does not state any a-priori assumption

on an individual’s preference structure. We test the approach via an experiment in a riskless context in which subjects

are asked to evaluate mobile phone packages that differ on three attributes.

Keywords: Multiattribute Utility Theory; High Dimensional Model Representations; Value Function Elicitation;

Sparse Grid Interpolation.

1. Introduction

In many real-life situations decision-makers (DM) face decision problems with value trade-offs (Keeney and Raiffa,

1993). A DM might be selecting among transportation means based on attributes such as price, time, and comfort

(Siskos and Yannacopoulos, 1985) or among jobs trading-off social contact and daily travel time (Tversky and Kah-

neman, 1991). In consumer research, several studies have shown that the DM’s willingness to pay depends on the

alternative attributes of the product under scrutiny (Bettman, 1979). In purchasing a car for instance, consumers are

asked to trade-off price versus safety and environmental protection (Bettman et al., 1998). These problems fall within

Email address: emanuele.borgonovo@unibocconi.it (Emanuele Borgonovo∗)

Preprint submitted to Elsevier September 17, 2013



the realm of multiattribute utility theory (MAUT) (Smith and von Winterfeldt, 2004; Wallenius et al., 2008). Walle-

nius et al. (2008) underline the significant growth in applications of MAUT, by stating that the business world has

become more competitive and less predictable, accentuating the importance of effective decision making and the use

of decision support tools (Wallenius et al., 2008, p. 1340). MAUT focuses on one of the main steps of the decision-

analysis process: the definition and quantification of the DM’s values and objectives.

An important distinction in this process is marked by whether the elicitation is carried over alternatives associated with

certain or uncertain prospects. If the selection is among alternatives with uncertain prospects, following Keeney and

Raiffa (1993), the resulting preference function is called a utility function. Conversely, under certainty, one refers to a

value function. Several researchers have addressed the conditions under which a value function may exist and special

forms of value functions can be used (Gorman, 1968; Krantz et al., 1971; Dyer and Sarin, 1979; Fishburn, 1970;

Keeney and Raiffa, 1993). One of the key concepts in studying the form of value functions is preferential indepen-

dence (preference separability in Gorman (1968)). To ease the appraisal, additive value functions are often assumed.

Utility additive (UTA) methods use linear programming (LP) to represent preference models (Jacquet-Lagreze and

Siskos, 1982; Greco et al., 2008, 2010; Figueira et al., 2009).

Deviations from additivity, however, are often encountered in the practice. Methods to better capture DM’s preferences

have been introduced. Recently, Kadzinsky et al. (2012) propose a method which can be seen as a new interactive

UTA-like procedure. Their approach is based on an additive model but thanks to its interactive nature is able to help

the DM in the comprehension of the necessary and possible preference relations (Kadzinsky et al., 2012, p. 544).

Other authors have been dealing with interactions and dependencies in a more direct way. Sounderpandian (1991)

considers the situation when preferential independence is absent and studies the value functions which are applicable

to such cases. Angilella et al. (2004) and Angilella et al. (2010) model preferences with interactions among criteria

via Choquet integral. Angilella et al. (2014) extend the Multi-criteria Satisfaction Analysis method to handle positive

and negative synergies between pairs of attributes.

Our goal is to provide a method for assessing the strength of interactions in a DM’s value function, without stating

any a-priori assumption on the form of the function itself. The method is grounded in the high dimensional model

representations (HMDR) theory (also known as functional ANOVA), a multivariate integral decomposition method

that has its roots in the findings of (Efron and Stein, 1981; Rabitz and Alış, 1999; Li et al., 2002a; Sobol’, 2003).

We exploit the facts that i) any integrable multiattribute value function can be expanded as a sum of terms related to

individual preferences for attributes, plus terms that quantify interactions among pairs, triplets of attributes, etc., and

ii) the terms in the expansion retain several of the properties of the original function (Beccacece and Borgonovo, 2011),

such as monotonicity. The methodology consists of two steps: 1) experimental elicitation of subjects’ value functions

over predetermined values of the attributes suggested by the adopted metamodelling method, and 2) reconstruction of

the multiattribute value function through interpolation, guided by the HDMR principles 1.

1The literature on this subject is vast, and offers us families of methods such as smoothing spline ANOVA (Friedman, 1991; Lin and Zang,
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We test the methodology via a laboratory experiment in which subjects are asked to value mobile phones packages

evaluated by three attributes. The attributes are messages, minutes and presence or absence of a special number (a

number for which an unlimited number of minutes is allowed).

We then discuss the insights gained by the reconstruction of subjects’ value functions. Calculation of the interaction

terms through high-order Sobol’ indices allows us to appreciate the relevance of interactions. Calculation of the first

order HDMR terms allows us to study monotonicity. At an aggregate level, we register that preferences are close to

additive, with interactions growing in relevance in the presence of a special number. At an individual level, additivity

does not hold in general. As to monotonicity, while results at an aggregate level show little violations, at an individual

level we observe violations when high number of minutes or messages are present. A discussion of these findings is

proposed.

The remainder of the paper is organized as follows. Section 2 provides a literature review. Section 3 introduces

the theory and implements it. Section 4 is devoted to the experiment, while Section 5 shows the results. Section 6

concludes with suggestions for further research.

2. Literature Review

A seminal literature review about research activity in MAUT up to the early 1990s is offered by Dyer et al. (1992).

They identify four major areas in which they predict significant future research contributions in multiple criteria

decision making (MCDM) and MAUT. These four areas are decision support applications, incorporation of behavioral

research, emphasis on robust decisions, and the role of heuristics. These suggestions are then verified sixteen years

later in the literature review of Wallenius et al. (2008). Indeed, the authors find more than 5 thousand publications

in MCDM or MAUT between 1992 and 2007. This number indicates both the importance and the intensity of the

research activity in the field.

In a riskless choice context, the usefulness of value functions in complex decision making problems has motivated

a considerable amount of formal theory development (for a review see Keeney and Raiffa (1993)). Debreu (1954)

proves that preferential independence among attributes is a sufficient condition for the existence of an additive value

function. Additivity is fundamental also in one of the most important elicitation procedures, namely the UTA method

(Jacquet-Lagreze and Siskos, 1982).

Roy (1985) summarizes the problem to which UTA has been applied into: choice, ranking, sorting and description

(Greco et al., 2010, 2008; Kadzinsky et al., 2012). Besides additivity, the UTA method assumes piecewise linear and

monotonic marginal value functions. Piecewise-linearity is not required by the UTAGMS method (Greco et al., 2008).

UTAGMS finds the largest set of additive value functions compatible with the preference information provided by the

DM. There, we have two possible outcomes: the UTAGMS method either does not find a solution or it finds multiple

solutions. Alternative reasons can lead to the no-solution case. Among these, the fact that the DM’s preferences do

2006), polynomial chaos expansion, sparse grid interpolation (Sudret, 2008; Buzzard, 2012), cut-HDMR (Li et al., 2002b).
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not match the additive model. Conversely, when the preferences of the DM fit the additive model, then UTAGMS might

find more than one compatible value function.

In some applications, if deviations from additivity do not lead to big biases, then they can be ignored (Dolan, 2000).

However, it is often the case that separability is violated and interactions among attributes become relevant (Farquhar,

1977; Payne et al., 1984), so that interactions are too large to be ignored (Wakker et al., 2004, p. 219). The presence of

interactions complicates the assessment. Kadzinsky et al. (2012) even though assuming an additive model introduce an

approach which is able to better capture DM’s preferences in a tailor-made fashion. They introduce a new interactive

UTA-like procedure to select a single value function representing the entire set of compatible value functions. The

general procedure for selection of the representative value function consists of four stages, which allow the DM to

1) say what advantage, in terms of the difference of values, the selected subset of alternatives should have over the

remaining alternatives, 2) choose out of five pre-defined targets to be attained by the representative value function, 3)

account for the intensity of preference in terms of comprehensive values of the alternatives, and 4) choose a type of the

marginal value functions. Besides additivity, a property widely used in the multiattribute elicitation is monotonicity.

Kadzinsky et al. (2012) assume a marginal monotone value function.

Several papers have proposed theoretical developments in case of absence of preferential independence (Gorman,

1968; Sounderpandian, 1991). Interaction among criteria has been accounted for within the Choquet integral frame-

work using non-additive ordinal regression (Angilella et al., 2004) and non-additive robust ordinal regression (Angilella

et al., 2010). As Angilella et al. (2004) state it is also well known that in multiple criteria decision problems it is also

important to consider positive interaction (synergy) or negative interaction among criteria (redundancy) (Angilella

et al., 2004, p. 735).

Although the riskless context is the main scope of this paper, we cannot omit a brief excursus on recent advances in

preference elicitation under risk. In the risky context, Wakker et al. (2004) propose a methodology for determining

levels of attributes that are as little as possible affected by interactions, so as to retain the advantages of additivity.

Abbas and Howard (2005) propose a class of multiattribute utility functions called attribute dominance utility func-

tions and show that they can be constructed using products of normalized marginal-conditional utility assessments or

using single-attribute utility assessments and a copula structure (Abbas, 2009, p. 1368). To relax some conditions im-

posed in Abbas and Howard (2005) (such as the n-increasing condition which corresponds to multivariate risk-seeking

(Richard, 1975)), Abbas (2009) introduces a more general copula structure, called multiattribute utility copula. As

to monotonicity, also in the risky context, it stems naturally from the non-satiation principle, both in the single and

multiattribute cases (Ingersoll, 1987; Tsetlin and Winkler, 2009) and is a widely adopted assumption (Abbas, 2009).
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3. The Methodology

3.1. Theory

In this section, we lay out the mathematical aspects of the method. We represent a multiattribute value function as

v : In ⊆ Rn → R, where I denotes the unit interval [0, 1], and In the n-dimensional unitary hypercube. Our sole

assumption is that v is square integrable.

One traditional approach is to use a multivariate Taylor expansion around a reference value to approximate the depen-

dence of output on the attributes. Instead, we propose the use of an integral-based expansion, the HDMR of Rabitz

and Alış (1999) (Li et al., 2002a; Sobol’, 2003).

We refer to Wang (2006) and Owen (2012) for thorough accounts. We follow the notation of these works and consider

a group of r attributes, letting z = {i1, i2, . . . , ir} ⊂ {1, 2, . . . , n} denote the corresponding indices. The complementary

set (i.e., the set of indices not in z) is denoted by ∼ z, and is formally equivalent to {1, . . . , n} \ z. For such z,

xz = (xi1 , xi2 , . . . , xir ) denotes a group of r attributes, xz ∈ Ir. Under the assumption that v is measurable, with x ∈ In,

it can be proven (Sobol’, 2003) that v can be written as

v(x) = v0 +
∑
z,∅

vz(xz), (1)

where v0 =
∫

In v(x)dx,
∑

z,∅ denotes the sum over all nonempty subsets of indices, and the functions vz(xz) are

determined recursively by

vz(xz) =

∫
In−r

v(xz, x∼z) −
∑
t⊂z

vt(xt)

 dx∼z. (2)

As shown in Sobol’ (2003), the functions vz(xz) in eq. (2) are orthogonal with respect to the L2 inner product using

Lebesgue measure. The representation in eq. (1) expands v(x) in such a way that the first order terms (functions

depending on only one variable) represent how much of the deviation from the mean of the preferences can be ascribed

to each attribute separately. The higher order terms represent the additional portion that emerges from interactions. In

HDMR theory, one considers also the quantity D =
∫

In (v(x) − v0)2dx. Using orthogonality of the vz, it follows that

D =
∑

z,∅
Dz, where Dz =

∫
Ir

[
vz(xz)

]2 dxz. (3)

In eq. (3), D is the integral of the square deviations of v from the constant term v0. Thus, D is decomposed into

2n − 1 terms which are in one-to-one correspondence with the nonconstant terms of the integral decomposition of

v(x). As such, eq. (1) is not representing or responding to uncertainty, but, instead, is obtained through a series of

nested integration. We are replacing a Taylor expansion based on differentiation through an integral expansion. If

one were to substitute the Lebesgue measure with any product measure (including Lebesgue) representative of the

decision-maker’s belief about x, then D would be the variance of v, i.e., the second moment of the distribution of v.

However, this interpretation goes beyond the mechanical decomposition originally conceived in Sobol´ (1993), and,

in fact, the decomposition fails if correlations are present.
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The consideration of eqs. (1), (2) and (3) is informative in many respects. In this work, two are of particular interest:

(a) the quantification of the strength of interactions and (b) monotonicity. Concerning the strength of interactions, the

quantity

ηr
z =

Dz

D
(4)

represents the contribution of the term Dz in the decomposition of D and is called the interaction effect of order r,

where r is the cardinality of z. Of particular relevance are the so-called main and total effects, i.e.,

η1
i =

D{i}
D

and ηT
i =

∑
z:z3i Dz

D
. (5)

In the formula for ηT
i the sum in the numerator includes all terms in the decomposition of v containing index i. Hence

ηT
i is the fraction of D associated not only with xi alone but also with its interactions with all the remaining factor

groups. The difference

ηI
i = ηT

i − η
1
i =

(∑
z:z3i Dz

)
− D{i}

D
(6)

represents the strength of interactions associated with xi. If v is additive, then it is readily seen that ηI
i = 0 for all

i = 1, 2, ..., n. For numerical approximation purposes, ηI
i ' 0 for all i = 1, 2, ..., n, implies that

v(x) ' v0 + v1(x1) + v2(x2) + ... + vn(xn). (7)

If v(x) is an elicited value function, estimation of ηI
i then allows us to appraise how far we are from the additive

assumption. If the difference between ηT
i and η1

i is non-negligible, then interactions emerge and we face non-additive

preferences. However, if the difference is negligible, then we are close to additivity and the elicitation can be carried

out with one of the methods that exploit this property.

Knowledge of eq. (2) can be utilized for assessing monotonicity as follows. Consider the univariate function of xi

obtained by averaging v(x) over all attributes but xi

g(xi) =

∫
In−1

v(xi, x∼{i})dx∼{i}. (8)

Then it is readily seen that

vi(xi) = gi(xi) − v0. (9)

Thus, vi(xi) reproduces up to a constant term the average behavior of v as a function of xi. In Beccacece and Bor-

gonovo (2011), it is shown that if v(x) is monotone, then all first order terms vi(xi) retain the monotonicity of v(x),

independently of whether it is additive or not. Furthermore, if v(x) is additive, it is exactly

v(x) =

n∑
i=1

gi(xi). (10)

Eqs. (9) and (10), then imply that the first order term vi(xi) tells us the dependence of v as a function of xi exactly. In

fact, the monotonicity of vi(xi) implies the monotonicity of v(x) and the converse, provided that v is additive. If v is

not additive, then the non-monotonicity of any of the vi(xi) suffices to assert the non-monotonicity of v(x).
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In the example below we apply the integral decomposition to a two-attribute multilinear function (see Appendix B for

the corresponding calculations).

Example 1. Consider the following multilinear function, v : I2 → R

v(x1, x2) = k1x1 + k2x2 + k1,2x1x2. (11)

Its integral decomposition results in the following terms

v0 = k1x1 + k2x2 + k1,2x1x2 (12)

where xi =
∫ 1

0 xidxi, i = 1, 2. The first and second order terms, are, respectively

v1(x1) = (x1 − x1)(k1 + k1,2x2) (13)

v2(x2) = (x2 − x2)(k2 + k1,2x1) (14)

v1,2(x1, x2) = k1,2(x1 − x1)(x2 − x2). (15)

The main effects are

η1
1 =

(k1 + k1,2x2)2D1

D
and η1

2 =
(k2 + k1,2x1)2D2

D
(16)

where Di =
∫ 1

0 (xi − xi)2dxi and D =
∫ 1

0

∫ 1
0 (v(x1, x2) − v0)2dx1dx2. The interaction indices are

ηI
1 = ηI

2 =
k1,2D1D2

D
(17)

which leads to the total effects

ηT
1 =

(k1 + k1,2x2)2D1 + k1,2D1D2

D
and ηT

2 =
(k2 + k1,2x1)2D2 + k1,2D1D2

D
. (18)

Eq. (15) confirms that the presence of k1,2 is instrumental to trigger interactions: if k1,2 = 0, the function is additive

and there are no interactions. However, the interaction term v1,2(x1, x2) is not simply equal to k1,2x1x2. It involves the

deviations from (x1, x2), which are absent in the term k1,2x1x2. The strength of the interactions is then quantified as a

residual value over the individual effects. Concerning monotonicity, eqs. (13) and (14) suggest that v(x1, x2) depends

linearly on x1 and x2, on average. The “on average” can be omitted if k1,2 = 0. In fact, v1(x1) = k1x1 + const in

the same way as v(x2) = k2x2 + const if k1,2 = 0. Thus, the closer the function is to additivity, the better the average

behavior approximates the exact behavior.

3.2. Implementation

The key to exploit the above-mentioned theoretical results is to approximate the mapping v : x 7→ y from given data

using one of the so-called surrogate model or metamodel methods that have been developed recently in the applied
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statistical and mathematical literature. Metamodelling methods have developed greatly in association with the study

of the behavior of scientific models produced through computer codes — we refer to the special issues of Bayarri

et al. (2009), and Ratto et al. (2012).

The governing principle can be summarized intuitively as follows. The unknown input-output mapping is assumed to

be square-integrable. Therefore, the mapping can be written in the form of eq. (1), where a suitable truncation order

applies. To illustrate (and for notational clarity), let us stop the expansion at order 2. Then the governing equation is

v(x) ' v0 +

n∑
i=1

vi(xi) +

n∑
i< j

vi, j(xi, x j). (19)

In the case of a polynomial surrogate model, each of the terms in the integral expansion is then, in turn, written through

polynomials in the form

vi(xi) ≈
∑h

r=1 α
i
rφr(xi)

vi, j(xi, x j) ≈
∑h′

p=1
∑h′′

q=1 β
i, j
p, qφp(xi)φq(x j)

(20)

where the φr(·) functions are elements of an orthonormal basis, and αi
r,β

i, j
p, q are corresponding coefficients to be deter-

mined numerically. In general, the specific choice of polynomials, φr, and the maximum degree of these polynomials,

both in a single-variable and in combinations of variables, has a great impact on the ability of the resulting expansion

to approximate a given function. A great deal of work has been done recently on the approximation properties of

such expansions (Bungartz and Griebel, 2004; Barthelmann et al., 2000) as well as on their use for calculating sen-

sitivity coefficients (Crestaux et al., 2009; Buzzard, 2012). To describe the construction of a surrogate model more

completely, let [X̂ Ŷ] denote a dataset, where X̂ is an N × n matrix containing the realizations of the attributes and Ŷ

an N × 1 vector with the corresponding values of Y . Depending on the number of degrees of freedom of the surrogate

model versus the number of samples, the coefficients αi
r, β

i, j
p, q are computed for best fitting the generated inputs (X̂) to

the corresponding model output (Ŷ). Then the functions vi(xi), vi, j(xi, x j) can be estimated numerically using eq. (20)

to obtain estimates v̂i(xi), v̂i, j(xi, x j).

Many methods for approximating the functions vi and vi, j are possible. For instance, polynomial chaos expansion

is discussed in Sudret (2008). An alternative method, based on orthogonal polynomials, which builds over the cut-

HDMR expansion is discussed into Rabitz and Alış (1999), Li et al. (2002a) and Ziehn and Tomlin (2009). Smoothing

spline ANOVA methods are widely discussed in the statistical literature (Lin and Zang, 2006). Ratto and Pagano

(2010) uses an approach based on the ACOSSO non-parametric regression method. All these methods use given data

of the inputs (X̂) and the output (Ŷ) to approximate v(x).

We can then summarize the procedure in Table 1.

We observe that the methodology applies also if the dataset X̂Ŷ is given. This is the case if the dataset is obtained

through, for instance, an online survey. If X̂Ŷ is not given, one needs to assess preferences through experiments, in

which case both the choice of X̂ and the method for obtaining Ŷ must be considered carefully. This case shall be

examined in this work in detail.
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Table 1: Implementation steps

Steps

1 Obtain or generate X̂

2 Obtain or generate Ŷ

3 Compute v̂i(xi), v̂i, j(xi, x j)

4 Compute η̂2
i ,̂ηT

i ,̂ηI
i

5 Examine the results to study additivity and monotonicity

In this work, we follow the steps in Table 1 using the formulation in eq. (20) to guide the selection of sampling points

(described further below). The sample points X̂ are chosen to be a nearly D-optimal set of points for polynomial

regression, with maximum degree 4 in each variable separately and interaction terms up to degree 2. This polynomial

basis is commonly used for sparse grid interpolation, which is known to have good approximation properties (Barthel-

mann et al., 2000). We then use cubic spline interpolation based on the Matlab routine “griddata” to approximate the

functions vi and vi, j for purposes of calculating sensitivity coefficients. Once the samples X̂ and the corresponding

experimental values Ŷ are known, we approximate v using cubic splines and then use a quasi Monte Carlo method to

evaluate the integrals in eq. (2) and (3) to obtain the sensitivity coefficients.

4. The Experiment

4.1. Subjects

Subjects were 65 students from Bocconi University, coming from various academic backgrounds (mainly Economics

and Business Administration). They were paid a show-up fee of 10EUR. In addition, each subject had a 10% chance

to be selected to play out one of his choices for real. Once the experiment was over, subjects drew a ticket from a

nontransparent bag containing 10 tickets, one of which was a winning ticket. If the subject had a non-winning ticket,

he received 10EUR and the experiment was over. If he had a winning ticket, he received 10EUR and he had to chose

a number in a given range, whose upper bound was determined by the subject’s number of questions. We then showed

the subject the choice question corresponding to the selected number and the relative stored answer he provided. In

case the package was chosen, the student was provided the corresponding monetary amount.

4.2. Procedures

The experiment was computer-based, run in Italian with 30 minute sessions of 8 subjects (on average). Two experi-

menters were present in each session. Instructions were read aloud and contained a warm up question. At the end of

the instructions the subject provided age, gender, undergraduate/master degree.

Subjects had to select between pairs of alternatives. Alternative A was composed of a mobile phone package, lasting

one month, with 3 attributes: messages, minutes, presence (or absence) of a special number (a number for which
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an unlimited number of minutes is allowed). Alternative A was composed in such a way that subjects were familiar

with the kind of questions that have been asked, given that the rationale is that the students should be actively and

seriuously involved in the decision problem (Scheubrein and Zionts, 2006, p. 20). Alternative B was a sure amount.

Subjects had to choose between A and B, by clicking on their preferred option. They had to confirm their choice.

If they confirmed their choice, then the next question was displayed; if not, the choice was displayed anew. The

confirmation question had the purpose of reducing the impact of response errors. For each package, we determined

the value that would make the subject indifferent between A and B through a series of choices that zoomed into

subjects’ preferences. The iteration procedure to determine the indifference value is explained in detail in Appendix

A. All choices were presented via a computer interface, an example of which is depicted in Figure 1.

Figure 1: Screen view of the computer interface

Table 2 reports 26 points for which we want to determine the indifference values yi for i = 1, ..., 26. The 26 points were

chosen to form an approximately D-optimal set of points for polynomial and/or spline regression over 2 variables. At

the end of the instruction, at the beginning of the experiment, subjects had to answer two training questions. These

questions only served to monitor subjects complete understanding of the task to be performed.

It is well established in the experimental literature that subjects might deliver answers which are inconsistent with one

another. Thus, a proper system for monitoring consistency is necessary. Best practices recommend that such system is

implemented in the experiment setup as a tool in support of internal validity of measurements. We monitored subjects’

consistency using two tests. In the first test, subjects were presented again with the third choice of 10 randomly chosen

iterations. The third choice was repeated because the value of B in the third choice is generally close but not equal

to the elicited indifference value, hence response errors are more likely (Bleichrodt et al., 2010). In the second test,

subjects had to repeat the entire elicitations of y10, y12, y24, y26. These repetitions served for the purpose of giving an

insight of the error made in the elicited indifference values.

Consistency checks are often also used to detect and hence, eliminate, subjects who are not approaching the exper-

iment seriously. The consistency rate in the repetition of the third choice of a given iteration is in general high and

around 70% (Stott, 2006). In the repetition of the full procedure, an absolute difference between the repeated point

and the original one which is twice higher than the standard deviation reflects an inconsistent behavior (Baillon et al.,
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2013). Violations of monotonicity are not rare, but a significant deviation from the average rate observed in the

literature (Birnbaum and Thompson, 1996) can be interpreted as a subject’s confusion in the task.

Once we started the elicitation of the indifference value of one package, we finished the entire bisection procedure.

However, the consistency questions above described were interspersed all over so that subjects could not understand

the bisection procedure.

5. Results

In total, 65 subjects were examined. 7 subjects were eliminated by the software because of inconsistency in executing

the task. Indeed, if a subject clicked on the same option more than 5 times, the experiment ended automatically to

avoid retaining subjects that had not understood the task.

For subjects 11, 32 and 40 the replication rates for the third choice of the 10 randomly chosen iterations are 40%,

50%, 50%, respectively. These rates are very low compared to the above-mentioned criterion. Adopting the criterion

of the maximum acceptable deviation of the repeated point from the original one, we observe that subject 15 fails

in 3 repetitions for points y12, y24, and y26, while subject 24 fails in 2 repetitions for points y24 and y26. Subject 1

has a violation of monotonicity rate of 53.8% for 13 tests (rate extremely high compared to the ones observed in

the literature, see (Birnbaum and Thompson, 1996)). Hence, by excluding these six subjects, we are left with 52

subjects. Of these 52 subjects, the repeated third choice of 10 randomly selected iterations and the repetition of 4

entire elicitations are not distant from the original answers, displaying consistency. Precisely, the replication rate for

the third choice of the 10 randomly iterations for 52 subjects is 91.3%, above the replication rates in the literature

(Stott, 2006). The entirely repeated elicitations of y10, y12, y24, y26 produce a paired-t test with p-values of 0.22, 0.6,

0.52, 0.23, respectively.

5.1. Interactions and Monotonicity

We analyze the aggregate data for a mean and median subject. For the analysis at an aggregate level, as predicted

by the best practices in the experimental work, we exclude some points for some of the 52 subjects, because their

assessment goes beyond a reasonable margin of error. We exclude those violations that are larger than 2 times the

average standard deviation (8.6) of the four differences between the original and the repeated measurements. This

occurs in 3.2% of the cases (4.4% in the 30 tests and 2.1% in the 13 tests), below what is commonly observed (for

a review see Birnbaum (2008)). The excluded points are the ones deviating more from the median values for the 52

subjects. Table 2 displays aggregate mean, median and standard deviation values for the 52 subjects.

Figure 2 displays the results for mean data. The graphs in the first row show the conditional preference functions

v(x1, x2|x3 = 0) and v(x1, x2|x3 = 1) as they result from interpolation, where x1=Minutes, x2=Messages, x3=Special

Number. Graphs a) and b) display the response surface obtained without and with special number, respectively. The

graph with special number is not smooth, due to some weak violation of monotonicity, as it will be discussed next.

Graph c) displayes both graphs simultaneously.
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0 Minutes Messages SN Mean Values Median Values

1 800 800 No 22.67(12.11) 20

2 1500 800 No 28.26(17.25) 24

3 800 1500 No 27.19(15.22) 26

4 200 800 No 18.12(8.68) 16

5 800 200 No 19.58(9.68) 18

6 1200 800 No 25.7(14.25) 24

7 800 1200 No 24.35(13.05) 24

8 500 800 No 21.18(11.01) 19

9 800 500 No 22.13(11.71) 20

10 1500 1500 No 31.96(18.89) 28

11 200 1500 No 18.88(8.43) 18

12 1500 200 No 26.31(15.91) 22

13 200 200 No 13.67(6.92)[ 13

14 800 800 Yes 25.4(16.95) 24

15 1500 800 Yes 32.82(20.17) 28

16 800 1500 Yes 31.29(16.56) 30

17 200 800 Yes 21.44(10.43) 20

18 800 200 Yes 23.88(12.13) 22

19 1200 800 Yes 30.79(17.54) 28

20 800 1200 Yes 27.54(14) 28

21 500 800 Yes 25.68(13.42) 24

22 800 500 Yes 24.25(11.22) 24

23 1500 1500 Yes 37.67(21.35) 32

24 200 1500 Yes 24.2(13) 23

25 1500 200 Yes 30.57(19.1) 26

26 200 200 Yes 17.69(8.77) 15

Table 2: Selected packages. Mean and median values. In parenthesis the standard deviation. SN stands for presence of Special Number.
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Figure 2: Results for mean values

Graphs d) and e) display the main effect functions v1(x1) and v2(x2). These functions show a monotone behavior.

Graph f ) displays the estimates of the main effects for messages and minutes in the absence of the special number. We

have η̂1
1 = 0.723 and η̂1

2 = 0.184. Thus, the attribute with the highest individual effect is minutes. Graph g) displayes

the corresponding total order sensitivity indices, η̂T
1 and η̂T

2 . We have: η̂T
1 = 0.817 and η̂T

2 = 0.277, respectively. This

result reveals that preferences are almost additive. In fact, the interaction effect is estimated at η̂I
1 = η̂I

2 = 0.093.

Graph h) displayes the main effects in the presence of the special number. Their estimates are η̂1
1 = 0.646 and

η̂1
2 = 0.206. Graph i) represents the total order sensitivity indices: η̂T

1 = 0.794 and η̂T
2 = 0.354. However, we

register a higher value of the interaction effect, which, conditional on the presence of a special number, increases to

η̂I
1 = η̂I

2 = 0.148. Thus, in the presence of a special number, preferences deviate further from additivity.

Figure 3 displays the results obtained utilizing median data. Graphs a) and b) display the response surface with and

without the special number, respectively, while graph c) both surfaces. With median data, there is no smoothness of

the surface also in case of no special number.

Graphs d) and e) display the Sobol’ main effect functions without and with the special number. Graph f ) displays the

estimates of the main effects for messages and minutes in the absence of the special number. We have η̂1
1 = 0.581

and η̂1
2 = 0.286. Graph g) displayes the corresponding total order sensitivity indices, η̂T

1 = 0.715 and η̂T
2 = 0.419,

respectively. This result confirms minutes as the most important attribute. The estimated interaction effect is η̂I
1 =
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Figure 3: Results for median values

η̂I
2 = 0.134, which is non-negligible.

Graph h) displays the main effects in the presence of a special number. Minutes are still more important than messages,

but not as much as before. Indeed, the estimates are η̂1
1 = 0.502 and η̂1

2 = 0.32. This result is confirmed by the values

of the total order sensitivity indices in graph i): η̂T
1 = 0.68 and η̂T

2 = 0.5. We also note that preferences become less

additive: the interaction effect increases η̂I
1 = η̂I

2 = 0.177.

At an aggregate level, violations of monotonicity are more pronounced for median data than for mean data. Analysing

the data, we observe that the presence of a special number seems to make preferences less smooth. Of the 13 pairwise

comparisons between alternatives which differ only on the presence or absence of the special number, mean and

median data always attribute a higher value to the alternative with the special number. On average, the presence of

the special number is valued 4EUR more, both for mean and median data. Of the 30 pairwise comparisons between

alternatives which differ only on one attribute, either minutes or messages, mean and median data seem to resist to

violation of monotonicity, with few exceptions. In general the problem seems to appear with packages (800, 500, 0)

and (800, 800, 0) for mean data and with packages (800, 500, 1) and (800, 800, 1) for median data. The increase of

messages from 500 to 800 does not seem to be evaluated by subjects, independently of the presence or absence of

the special number. A similar problem appears for median values of (1200, 800, 1) and (1500, 800, 1), and for median

values of (1200, 800, 0) and (1500, 800, 0): the alternatives have the same value.

At an individual level, we observe that the interaction terms both in presence and absence of the special number
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become significant (p = 0). Moreover, we cannot reject the null of their difference being equal (two-sample t test

p=0.89).

At an individual level, violations of monotonicity are more frequent. Some violations of monotonicity are more

common than others. Table 3 shows the alternatives for which more than 30% of subjects violate monotonicity.

Alternative 1 Alternative 2 Violations of Monotonicity

7 vs 20 (800, 1200, 0) (800, 1200, 1) 34.7%

4 vs 11 (200, 800, 0) (200, 1500, 0) 32.7%

5 vs 9 (800, 200, 0) (800, 500, 0) 30.8%

9 vs 1 (800, 500, 0) (800, 800, 0) 40.8%

1 vs 7 (800, 800, 0) (800, 1200, 0) 32.8%

12 vs 2 (1500, 200, 0) (1500, 800, 0) 34.6%

8 vs 1 (500, 800, 0) (800, 800, 0) 32.7%

6 vs 2 (1200, 800, 0) (1500, 800, 0) 42.3%

18 vs 22 (800, 200, 1) 800, 500, 1) 30.8%

20 vs 16 (800, 1200, 1) (800, 1500, 1) 30.8%

25 vs 15 (1500, 200, 1) (1500, 800, 1) 40.4%

Table 3: Alternatives for which more than 30% of subjects violate monotonicity

As we can see from Table 3, violations of monotonicity occur more frequently when subjects are comparing alterna-

tives that differ either in minutes or messages, then when they are comparing alternatives that differ by the presence

or not of the special number.

Several of the above tests compare packages with high levels of minutes. Violations of monotonicity are common

and there is a wide literature that supports such findings. The experiment was not constructed to test for violations of

monotonicity, this would go beyond the scope of such work, rather to test if monotonicity holds. However, we can

perform an analysis that allows us to state if some of these violations are statistically more significant than other ones.

Hence, we perform a paired t-test for each of the above comparisons, to see if we can reject the null hypothesis that

the values are equal. For most of them we cannot reject the null hypothesis. This might suggests that subjects were

indifferent between the compared packages, and that an apparent violation of monotonicity might be due to error.

There are though some exceptions. For some comparisons we can reject the null that the values are equal. It seems

that subjects, when facing a high level of minutes (500 seems to be perceived already as such), ignore the presence of

the special number ((800, 1200, 0) vs (800, 1200, 1)), or a higher level of messages ((800, 200, 0) vs (800, 500, 0) and

(1500, 200, 0) vs (1500, 500, 0)), or a higher level of minutes ((500; 800; 0) vs (800; 800; 0)), to the point that better

packages are evaluated significantly less (p < 0.02). Most of these pairwise comparisons also display a high level of
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messages, which can create similar problems. As before mentioned, the repeated elicitations provide values which do

not differ from the original ones. Hence, also a comparison with the values obtained from the repeated elicitations

would not provide a different answer. It is also true that if subjects evaluate wrongly a package this has impact on the

other comparisons. Unfortunately, we are not able to control for this.

5.2. Discussion

At an aggregate level, results based on mean and median data are similar. There are three major similarities. First,

minutes account for more variability in v(x) than messages. This is reasonable to expect. Second, moving from

packages without special number to packages with special number, the relevance of minutes decreases. This is still

reasonable given that the presence of a special number can be naturally interpreted as if some minutes had been added

to the package. Third, preferences become less additive in case of special number. The stronger effect of interactions is

indeed an effect of the partial overlapping of the attributes minutes-special number, because offering a special number

is equivalent to granting an unlimited number of minutes to the customer for specific calls.

The only difference between mean and median data is represented by the fact that two of the above-mentioned findings

are less pronounced for median data. Indeed, minutes are still more important than messages, but in a less evident way.

Furthermore, when shifting from absence to presence of special number, the interaction term increases its relevance.

At an individual level, the interaction terms become significant and we observe a higher rate of violations of mono-

tonicity. Such violations appear to be more frequent for high levels of messages and minutes, as if above a given

threshold value, subjects become insensitive to their increase. Indeed, Wathieu (2004) proposes a model to account

for the fact that consumer’s willingness to pay for a good is highest when the habitual level of consumption is mod-

erate. Graphically, the willingness-to-pay function would have an interior maximum. If we agree on the fact that

subjects are used to packages with a moderate level of minutes and messages, this model could explain the lower

value assigned to packages with higher messages and minutes.

In experimental work we often observe differences between aggregate and individual data. However, the analysis of

individual preferences provides critical insights for a mobile company when offering the packages.

6. Conclusions

We have presented an elicitation method for multiattribute value functions. The method rests on the HDMR theory

and has the advantage of not stating any assumption on the DM’s preferences structure. The interpolation of the value

function exploits recent advances in the field of surrogate modelling which allows one to study whether preferences

are additive and/or monotonic. The method does not pose restrictions on the type of data, which can be the result of

surveys (internet surveys) or experiments (as discussed here). It is readily replicable and offers new reading glasses

to investigate experimental results. It can be used as an initial screening exercise to detect consumers preferences. In

fact, getting to know whether certain structural properties of multiattribute preferences hold in the initial phases of
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the elicitation process might simplify the overall assessment procedure providing guidance on the methods to use in a

subsequent phase of the elicitation.

We analysed data produced by experiments involving preference elicitation for mobile phone packages — a problem

close to the sensitivity of the subjects involved in the experiment, namely, students. Application of the method has

revealed (aside the overall consistency) that, at an aggregate level, little violations of monotonicity are registered and

the presence of a special number increases the relevance of interactions and causes the value function of deviate from

additivity. When data are analysed at an individual level, however, results reveal highly non-additive value functions.

Also, violations of monotonicity are present for high levels of minutes and messages.

Finally, the extension of the method to a risky context is part of future research by the authors.

7. Appendix A

The initial value of B was the maximum between 12 and a random integer y in the interval [x, x + 20], with x being

a selected starting value for each point. There were two possible scenarios: (i) If A was chosen we increased y by 20

until B was chosen. We then halved the step size and decreased y by 10. If A [B] was subsequently chosen we once

again halved the step size and increased [decreased] y by 5, etc. (ii) If B was chosen we decreased y by 20 until A was

chosen. We then halved the step size and decreased y by 10. If B [A] was subsequently chosen we once again halved

the step size and decreased [increased] y by 5, etc. The elicitation ended when the difference between the lowest value

of y for which B was chosen and the highest value of y for which A was chosen was less than or equal to 5. It then

took the midpoint, and stored it. If decreasing the number of 20 gave a negative number, then we decreased it by y/2.

Decimals were not allowed to avoid confusion. We report an example below:

Iteration y Choice

1 50 A

2 70 B

3 60 A

4 55 B

Table 4: Example of the elicitation

Here the program ended since the difference is 5, took the midpoint 52.5 and stored 53.

8. Appendix B

We start with v0. We have

v0 =
∫ 1

0

∫ 1
0 v(x1, x2)dx1dx2 = k1

∫ 1
0

∫ 1
0 x1dx1dx2 + k2

∫ 1
0

∫ 1
0 x2dx1dx2 + k1,2

∫ 1
0

∫ 1
0 x1x2dx1dx2 =

k1x1 + k2x2 + k1,2x1x2
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For the first order terms, we have the non-orthogonalized functions

g1(x1) =

∫ 1

0
v(x1, x2)dx2 =

∫ 1

0
(k1x1 + k2x2 + k1,2x1x2)dx2 = k1x1 + k2x2 + k1,2x1x2

g2(x2) =

∫ 1

0
v(x1, x2)dx1 =

∫ 1

0
(k1x1 + k2x2 + k1,2x1x2)dx1 = k1x1 + k2x2 + k1,2x1x2

Subtracting v0, we obtain the orthogonalized first order functions

v1(x1) = k1x1 + k2x2 + k1,2x1x2 − (k1x1 + k2x2 + k1,2x1x2) =

k1x1 + k2x2 + k1,2x1x2 − k1x1 − k2x2 − k1,2x1x2 =

k1x1 + k1,2x1x2 − k1,2x1x2 = k1x1 − k1x1 + k1,2x1x2 − k1,2x1x2 =

k1(x1 − x1) + k1,2x2(x1 − x1) = (x1 − x1)(k1 + k1,2x2)

The function v2(x2) is found in a similar way, obtaining

v2(x2) = (x2 − x2)(k2 + k1,2x1)

Finally, the interaction term v1,2(x1, x2) is given by the difference between v(x1, x2) − v1(x1) − v2(x2) − v0. We have

v1,2(x1, x2) = k1x1 + k2x2 + k1,2x1x2+

−((x1 − x1)(k1 + k1,2x2)) − ((x2 − x2)(k2 + k1,2x1)) − (k1x1 + k2x2 + k1,2x1x2 )

= k1,2(x1 − x1)(x2 − x2).

For the global sensitivity indices, we exploit eq. (3)

η2
1 =

∫ 1

0
(x1 − x1)2(k1 + k1,2x2)2dx1 =

(k1 + k1,2x2)2D1

D

η2
2 =

∫ 1

0
(x2 − x2)2(k2 + k1,2x1)2dx2 =

(k2 + k1,2x1)2D2

D

ηI
1 = ηI

2 =
k1,2D1D2

D
.

where Di =
∫ 1

0 (xi − xi)2dxi and D =
∫ 1

0

∫ 1
0 (v(x1, x2) − v0)2dx1dx2. Hence, the total contributions are given by

ηT
1 =

(k1 + k1,2x2)2D1 + k1,2D1D2

D

and

ηT
2 =

(k2 + k1,2x1)2D1 + k1,2D1D2

D

so that

ηI
1 = ηI

2 =
k1,2D1D2

D
.
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