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Abstract

Building on recent work on dynamic interactive epistemology, we
extend the analysis of extensive-form psychological games (Geneako-
plos, Pearce & Stacchetti, Games and Economic Behavior, 1989) to
include conditional higher-order beliefs and enlarged domains of payoff
functions. The approach allows modeling dynamic psychological ef-
fects (such as sequential reciprocity, psychological forward induction,
and regret) that are ruled out when epistemic types are identified
with hierarchies of initial beliefs. We define a notion of psychological
sequential equilibrium, which generalizes the sequential equilibrium
notion for traditional games, for which we prove existence under mild
assumptions. Our framework also allows us to directly formulate as-
sumptions about ‘dynamic’ rationality and interactive beliefs in order
to explore strategic interaction without assuming that players beliefs
are coordinated on an equilibrium. In particular, we provide an ex-
ploration of (extensive-form) rationalizability in psychological games.
KEYWORDS: psychological games, belief-dependent motivation,

extensive-form solution concepts, dynamic interactive epistemology.
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1 Introduction

We develop a framework for analyzing strategic interaction when players
have ‘belief-dependent’ motivations, thereby generalizing the theory of ex-
tensive form psychological games proposed by Geanakoplos, Pearce & Stac-
chetti (1989; henceforth GPS). The rest of this introduction motivates our
approach in more detail.
Traditional game theory is not a rich enough toolbox to adequately de-

scribe many psychological or social aspects of motivation and behavior. The
traditional approach assumes that payoffs depend only on which actions are
chosen. By contrast, the payoffs of decision makers who are emotional or
motivated by reciprocity or social respect may depend also on which be-
liefs (about choices, beliefs, or information) players harbor. The following
examples illustrate:

1. When Ann takes a taxi ride she tips as much as she expects that the
driver (Bob) expects to get. She suffers from guilt if she tips less.

2. Cleo suddenly pushes Dan over. Should Dan splash a bucket of water
over Cleo in return? Maybe she actually tried to hug him? If so, Dan
would rather forgive (maybe even hug) Cleo.

3. Eva is unemployed. Her neighbor, Fred, observes the effort with which
she tries to get a job. Fred’s taxes pay for Eva’s unemployment benefits,
so Eva’s choice has externalities the size of which depends on her talent
translating effort to probability of getting a job (low effort is costlier
to Fred if Eva is talented and could have gotten a job had she tried
harder). Eva’s talent is known only to her, but Fred makes inferences
observing her effort. This determines the social respect he bestows on
Eva, and since she cares about respect this influences her effort.

Ann’s tip, Dan’s hug/soak choice, and Eva’s effort each pins down a
strategy profile. Yet the preferred choice depends on the player’s belief.1

The point that belief-dependent motivation may be important for strate-
gic decision making is made by GPS, who present several intriguing examples
involving various emotions. They show the inadequacy of traditional meth-
ods to represent the involved preferences, and develop an extension (in the
normal as well as in the extensive form) of traditional game theory to deal
with the matter.2 Only recently, however, has a larger set of economists

1Ann’s preference depends on her belief of Bob’s belief; Dan’s on his assessment of
Cleo’s intentions; Eva’s preferences over effort depend on Fred’s inferences on her talent.

2Gilboa & Schmeidler (1988) also consider some games with belief-dependent payoffs.
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come to acknowledge the relevance of belief-dependent motivation, mainly
following the work by experimentalists.3 In the lab, subjects often display
‘non-selfish’ behavior. This has inspired theoretical models of ‘social pref-
erences’ which can rationalize the data.4 These models differ in structure,
and some do not require a deviation from traditional game theory (e.g., in-
equity aversion models). However, a few models describe belief-dependent
motivation, and some experiments support such models.5

While GPS’ paper is highly inspiring for all this work, a careful scrutiny
reveals that their approach is too restrictive to handle many plausible forms
of belief-dependent motivation (this is acknowledged by GPS themselves; see
pp. 70, 78). There are several reasons:

R1 (updated beliefs): GPS only allow initial beliefs to enter the domain
of a player’s utility, while many seemingly important forms of belief-
dependent motivation require updated beliefs to matter.

R2 (others’ beliefs): GPS only allow a player’s own beliefs to enter the
domain of his utility function, while there are conceptual and technical
reasons to let others’ beliefs matter.

R3 (dependence on strategies): GPS follow the traditional extensive games
approach of letting strategies influence utilities only insofar as they in-
fluence terminal histories, but many forms of belief-dependent motiva-
tion become compelling in particular in conjunction with preferences
that depend on strategies in ways not captured by terminal histories.

R4 (non-equilibrium analysis): GPS restrict attention to equilibrium anal-
ysis, but in many strategic situations there is little compelling reason
to expect players to coordinate on an equilibrium and one may wish to
explore alternative assumptions.

This list deserves more discussion and backup by examples, but we post-
pone this until the next section. Here we just note that items in the list

3See, however, the applied psychological-game theoretical work by Huang &Wu (1994),
Dufwenberg (1995), Geanakoplos (1996), Ruffle (1999), Huck & Kübler (2000), Dufwen-
berg (2002), and Li (2005), as well as the models by Bernheim (1994) and Dufwenberg
& Lundholm (2000) which can be given psychological-game interpretations (as we explain
below) although such connections are not made in the original papers.

4See Fehr & Gächter (2000) for a discussion.
5For models, see Rabin (1993), Dufwenberg & Kirchsteiger (2004), Falk & Fischbacher

(1998), and Charness & Dufwenberg (2004); for experiments, see Dufwenberg & Gneezy
(2000), Bacharach, Guerra & Zizzo (2002), Guerra & Zizzo (2004), and Charness &
Dufwenberg (2004).
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have lead some researchers to deviate from GPS’ framework, in developing
specific examples or models where belief-dependent motivation play a role.
However, apart from GPS, almost no papers are concerned with developing
the overall framework of psychological game theory, by defining new classes
of psychological games for which solution concepts are provided.6 In this
paper we attempt to fill this gap.
Our approach crucially draws on results and insights by Battigalli & Sinis-

calchi (1999) on how to represent hierarchies of conditional beliefs. This
material is essential for a systematic treatment of R1, and figures in the
background of R2-R4 since these issues are relevant in contexts with up-
dated beliefs. We define a large class of psychological games, which contains
(in a particular sense) GPS’ games as well as traditional games as special
cases. We introduce a new notion of psychological sequential equilibrium,
which generalizes Kreps & Wilson’s (1982) sequential equilibrium notion, for
which we prove an existence theorem. We develop a framework for analyzing
interactive epistemology in psychological games, which we employ to develop
a notion of rationalizability, thereby addressing R4.
Section 2 gives an overview of the conceptual issues that lie behind and

motivate our work. Section 3 develops the general framework, and in par-
ticular defines a new class of psychological games. Section 4 presents the
notion of psychological sequential equilibrium. Section 5 contains the inter-
active epistemology analysis. Section 6 discusses extensions which thus far
have not been covered, including how to deal with incomplete information.
Section 7 concludes. An appendix collects some of the proofs.

2 Overview of the conceptual issues

This section surveys the conceptual issues that motivate our work. After
a preamble, we go through R1-R4 (from the Introduction) in more detail,
and provide supporting examples. The style is ’semi-technical’; we introduce
some notation, but postpone a proper treatment of details for later sections.
The traditional approach to analyzing extensive games describes a player’s

preferences using a utility function of the form

6Kolpin (1992) explores an alternative route to analyzing GPS’ games, in which players
‘choose beliefs’. Gul & Pesendorfer (2004) propose an alternative framework to model
social preferences that does not feature belief-dependent motivations, and yet is able to
capture some of the phenomena typically modeled with psychological games. Segal &
Sobel (2003) analyze simultanous moves games, and assume that preferences over material
consequences depend on the equilibrium probability distribution over actions. They show
that their approach can be regarded as a reformulation of GPS’ normal form games.
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ui : Z → R

where Z is the set of terminal histories (end nodes).
Psychological games are designed to capture richer motivations than tra-

ditional games, and the payoff functions have richer domains. GPS define a
set of i’s initial (pre-play) beliefs about others’ strategies and initial beliefs,
here referred to asMi, which does not rule out any hierarchy of initial beliefs.
GPS model preferences using utility functions of the form

ui : Z ×Mi → R

Their approach is rich enough to model interesting forms of belief-dependant
motivation. Example 1 of the Introduction, e.g., could be handled by assum-
ing that Ann’s payoff equals to w− t−2|τ− t|, where w is her pre-tip wealth,
t ∈ {0, 1, ..., w} is her tip, and τ is her expectation of Bob’s expectation of t.
Ann would maximize her payoff by choosing t = τ .7

However, the issues R1-R4 lead us to enrich the domain of utilities fur-
ther. We consider payoff functions of the form

ui : Z ×
Y
j∈N

Mj ×
Y
j∈N

Sj → R

whereMj is the set of j’s possible conditional beliefs about others’ strategies
and conditional beliefs, Sj is the set of (pure) strategies of j, and N is the
set of players. The conditioning in Mj is done for every history, building
on Battigalli & Siniscalchi (1999) who show how to represent hierarchies of
conditional beliefs without ruling out any hierarchy. Mj is (isomorphic to)
a subspace ofMj, so the payoff functions we consider are more general than
those assumed by GPS.8

It is useful to keep these functional forms in mind as we go, because the
issues R1-R4 can be related to different arguments of ui.

R1 (updated beliefs):

Rabin’s (1993) theory of reciprocity, in which players reciprocate belief-
dependent (un)kindness with (un)kindness, is probably the most well-known
application of GPS’ theory. Rabin works with the normal form version of
GPS’ theory. His goal is to highlight certain key qualitative features of reci-
procity, and he does not address issues of dynamic decision making although

7See Charness & Dufwenberg (2004, ex. 1) for more discussion of a similar example.
8For a more precise comparison between our framework and GPS see subsection 6.1.
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he points out that this is important for applied work (p. 1296). Dufwenberg
& Kirchsteiger (2004) pick up from there, and develop a theory of reciprocity
for extensive games. In motivating their exercise, they argue that it is neces-
sary to deviate from GPS’ extensive form framework: GPS only allow initial
beliefs to enter the domain of a player’s utility, while the modeling of recip-
rocal response at various ventures of a game tree requires that kindness be
re-evaluated using updated belief. The argument is an instance of R1.
Reciprocity theory does not provide the easiest route to illustrating the

key issues involved, however. Instead, we will consider the motivation of
guilt aversion, applied to the trust game Γ1.

9 Payoffs are in dollars and do
not necessarily represent preferences. For this reason we call them ‘material
payoffs’.

Trust Share

(Ann) 1 −→ (Bob) 2 −→
µ
2
2

¶
| |

Don0t ↓ Grab ↓µ
1
1

¶ µ
0
4

¶
Figure 1. The Trust Game Γ1 with material payoffs

We now modify Γ1 to incorporate a guilt sentiment of Bob’s: Let α be
the probability that Ann (initially) assigns to Bob’s strategy Share if Trust.
Bob suffers from guilt to the extent that he believes he lets Ann down. He
argues that the higher is α the more let down she will be if he chooses Grab.
Bob does not know what α is, as this belief is in the mind of Ann. However,
he has a belief about α. Let β be Bob’s expectation of α, conditional on Ann
choosing Trust. We can model guilt aversion assuming that Bob’s utility at
the terminal history (Trust, Grab) is decreasing in β.
The psychological game Γ2 models this. What appears at the terminal

histories should be thought of as utilities, not as material payoffs although
the notions coincide for all but one terminal histories.10

9Charness & Dufwenberg’s (2004), coin the term “guilt aversion” and develop a the-
ory of it within the framework of GPS. Huang & Wu (1994), Dufwenberg (1995, 2002),
Dufwenberg & Gneezy (2000), Bacharach, Guerra & Zizzo (2002), and Guerra & Zizzo
(2004) consider related sentiments in trust games.
10There is no special significance to the “5” in Figure 2; we could have chosen many

other numbers to get a working numerical example. Similar remarks apply to all the
examples that follow in this section.
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Trust Share

(Ann) 1 −→ (Bob) 2 −→
µ
2
2

¶
| |

Don0t ↓ Grab ↓µ
1
1

¶ µ
0

4− 5β

¶
Figure 2. The Psychological Trust Game Γ2

Γ2 is not a game in GPS’ class, because β (being an updated belief) is
not captured by any element of Mi. This in itself illustrates R1. However,
in order to appreciate the significance of this issue, it is useful to note that
one can draw compelling (we think) conclusions about behavior that hinge
crucially on the fact that β is an updated belief.
Following Dufwenberg (1995, 2002), consider the following (for the time

being intuitive) ‘psychological forward induction’ argument: Suppose Ann
chooses Trust. If she is rational, this implies that she believes the probability
that Bob would choose Share (after Trust) is at least 1

2
, i.e., α ≥ 1

2
. Since

we can figure this out, presumably Bob can too. Even if he is uncertain
regarding the relevant value of α, he infers it is at least 1

2
. Hence β ≥ 1/2.

Since 4 − 5β < 2 if β ≥ 1
2
, he prefers Share. Since we can figure this out,

presumably Ann can too. Hence she chooses Trust, fully expecting Bob to
Share (so α = 1). Bob figures this out (so that β = 1), which further
reinforces his preference to Share. Thus, the path (Trust, Share) is predicted!
The logic of the preceding argument depends on belief β being conditional

on Ann choosing Trust. The argument cannot be recast using GPS’ theory,
sinceMi contains only initial beliefs, but it can be captured in our framework,
since Mi contains all hierarchies of conditional beliefs.
We close our discussion of R1 by arguing that once one allows for con-

ditional beliefs to enter utilities, it becomes natural to include beliefs condi-
tional on terminal histories (which is allowed by our framework). Consider
the following example Γ3. We only specify utilities for player 1 (Ann), because
the the point we wish to make is independent of player 2’s (Bob) payoffs.
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(Ann) 1
c . & r

(Bob) 2 2 (Bob)
L . ↓ R L0 ↓ & R0¡−γ
∗
¢ ¡

1
∗
¢ ¡−δ

∗
¢ ¡

1
∗
¢

Figure 3. The Psychological Regret Game Γ3

Γ3 is a psychological game, in which Ann is disposed to suffer from regret,
which we model via belief-dependent utility components at the terminal his-
tories (c, L) and (r, L0).11 γ is the probability with which Ann, conditional
on (c, L) being reached, thinks that Bob would have chosen R0 had she cho-
sen r ; δ is the probability with which Ann, conditional on (r, L0), thinks Bob
would have chosen R had she chosen l. The idea is that Ann’s regret depends
on what she thinks would have happened had she chosen differently, an as-
sessment which might change in light of new information such as a choice
by Bob.12 The crucial thing to note in regard to R1 is that γ and δ are
conditional beliefs at terminal histories.13

R2 (others’ beliefs):

There are two independent justifications for letting a player’s utility de-
pend on others’ beliefs. First, this may be an adequate description of how
certain social rewards operate. Refer back to example 3 from the Introduc-
tion, where Eva’s preferences over effort depends on Fred’s inferences. The
example is (essentially) taken from Dufwenberg & Lundholm (2001). A re-
lated example is Bernheim’s (1994) model of social conformity. These authors
develop formal models where a player’s utility depends directly on others’ be-
liefs (although they do not make reference to psychological games).14

11The notation (c, L) and (r, L0) refers to the sequence of action labels involved.
12Bell (1982) and Loomes & Sugden (1982) develop theories of regret, in which a decision

maker’s experienced utility depends on the post-choice revelation of a state-of-nature. Our
formulation preserves that spirit, but extends it to belief-dependent motivation. This is
natural in a strategic setting, where players cannot perfectly observe ex post the state of
the world, which includes what another player would have chosen.
13In Γ3, Ann’s utility depends directly on her terminal history belief. By expanding on

the theme, one can readily cook up examples where a player’s utility depends on beliefs
about a terminal history belief of another player. For example, Bob’s utility at (c, L) could
depend on ε, defined as his expectation of δ, conditional on history r.
14Indeed, these models can be interpreted as psychological games with asymmetric in-

formation where the utility of the informed player depends on the terminal beliefs of the
uninformed player (see subsection 6.2).

8



The second justification concerns convenience in modeling. Refer back
to the discussion concerning Γ2, including the definition of α and β. Recall
that in Γ2 we modeled Bob’s guilt feelings by letting his psychological payoff
depend on β. It turns out that one has an equivalent modeling choice. Rather
than go with Γ2, one can assume that Bob’s utility at (c, L) depends directly
on α, rather than on β, although Bob is uncertain about the true value of
α so that he uses probability assessments to weigh the different possibilities.
We then get Γ4:

Trust Share

(Ann) 1 −→ (Bob) 2 −→
µ
2
2

¶
| |

Don0t ↓ Grab ↓µ
1
1

¶ µ
0

4− 5α

¶
Figure 4. The Psychological Trust Game Γ4

After Trust, when Bob has to make a choice he compares 2, the payoff
of action Share, with the conditional expected payoff of action Grab, that is
E2[4− 5α|Trust] = 4− 5β; we obtain the same results as with Γ2.

15

This example illustrates a general point: some belief-dependent motiva-
tions can be modeled replacing a conditional own belief of a certain ‘order’
(meaning: how many layers of beliefs about beliefs/choices are involved)
with another object involving one degree lower order.16 This may allow one
to work with utilities of the form ui : Z ×

Q
j 6=iMj ×

Q
j∈N Sj → R, where

Mi is not a factor of the domain. This has two methodological advantages.
First, it may seem easier to work with lower order beliefs (like having a
first-order belief like α rather than a second-order belief like β). Second,
and most importantly, one is lead to clearly distinguish between the carriers
of utility (i.e., elements of Z ×

Q
j 6=iMj ×

Q
j∈N Sj) and how a player deals

with uncertainty by making probabilistic predictions and updating them (de-
scribed by elements of Mi). By contrast, when the domain of i’s utility is
Z ×

Q
j∈NMj ×

Q
j∈N Sj elements of Mi end up serving both purposes.

15We do not suggest that Γ4 is interesting only in that it provides a convenient alternative
way to analyzing Γ2; the emotion modeled in Γ4 may make sense in its own right, as a
primitive assumption about preferences (akin to example 3 of the introduction).
16A special case of this appears if a player holds a conditional belief about a choice, in

which case the object involving one degree lower order would be that choice itself. The
object may also be an initial belief, like α in the example.
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R3 (dependence on strategies):

Many forms of belief-dependent motivation are compelling in combina-
tion with preferences that depend on overall strategies, beyond what is cap-
tured by how strategies cause terminal histories to be reached. Consider the
psychological game Γ5, a variation of Γ1 where Ann may ‘dissipate’ all the
material payoffs. The payoffs of Γ5 are material, not necessarily reflecting
utilities.

Trust Share Keep

(Ann) 1 −→ (Bob) 2 −→ (Ann) 1 −→
µ
2
2

¶
| | |

Don’t ↓ Grab ↓ Dissipate ↓µ
1
1

¶ µ
0
4

¶ µ
0
0

¶
Figure 5. Modified Trust Game Γ5 with Material Payoffs

To make our point, let us first model a sentiment of Ann’s: the stronger she
expects Bob to Share, the more let down she feels at the terminal history
(Trust, Grab), and this feeling is painful to her. One way to model this is
to assume that her utility at (Trust, Grab) is not 0 (as in Γ5), but rather
0 − 5α = −5α, where α is the probability Ann assigns to Bob’s strategy
Share if Trust. However, arguably this assumption has the following flaw:
Suppose that Ann is planning to choose Dissipate. In this case, she is bound
to get zero material payoff whether or not Bob chooses Share, so it may
makes little sense for her to feel disappointed if he does! We propose that
a natural reaction is to let Kate’s utility following (Trust, Grab) be −5α if
she plans to choose Keep, but 0 if she plans to choose Dissipate. In this case,
Ann’s utility depends on her own choice of strategy, on top of which terminal
history is reached and which beliefs she harbors.
A slight further complication of the example will suggest that a player’s

utility may also reasonably depend on another player’s strategy. To this end,
focus on Bob. Assume that he suffers from guilt to the extent that he believes
he lets Ann down, so that he suffers a utility loss following (Trust,Grab). One
way to model this is to let his utility at (Trust, Grab) be 4− 5α (as in Γ4).
This specification would, however, seem to suffer from a flaw analogous to
the one we discussed in the previous paragraph.17 A natural reaction is to

17Suppose that Gwen is planning to choose Dissipate. In that case, she is bound to get
no material payoff whether or not Hugh chooses Share, so it makes little sense for him to
feel that he lets her down if he does.
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modify Bob’s payoff following (Trust,Grab) to be 4 − 5α if Ann plans to
choose Keep, but 4 if she plans to choose Dissipate.
These examples to illustrate the following: Psychological motivations of-

ten exhibit a concern, not only for players’ actual actions, but also for their
intentions. Intentions depend on beliefs as well as on strategies, and the latter
dependence goes beyond what is implied by how strategies induce endnodes.
Therefore, the domain of our psychological utility function includes (condi-
tional) beliefs and strategies of every player, on top of terminal nodes.

R4 (non-equilibrium analysis):

R1-R3 concern features of players’ motivation that one may wish to in-
corporate in a formal framework. The next step is to generate predictions
about behavior. We propose a notion of psychological sequential equilib-
rium (PSE), which generalizes the sequential equilibrium concept of Kreps
& Wilson (1982). We postpone illustrations of PSE until we have formally
introduced the concept in section 4.
While much of economic theory presumes that players coordinate on an

equilibrium, it is not always clear that such an assumption is justified. For
one thing, people may be quite rational, and confident in others’ rationality,
even if they fail to coordinate on an equilibrium. In conventional game the-
ory, related matters have inspired work on the implications of common belief
of rationality; see e.g. the work by Bernheim (1984) and Pearce (1984) on
rationalizability. This brings us to R4. There is little reason to assume that
equilibrium coordination is easier in psychological games than in standard
games. In fact, since psychological games often seem more complicated, and
since problems of equilibrium multiplicity are likely to be enhanced in psy-
chological games, assuming equilibrium may be assuming too much especially
in psychological games.
Another reason to feel skeptical about a fully fledged equilibrium analysis

in psychological games is the following: It is often argued that players learn
to play Nash equilibrium because through recurrent strategic interaction
they come to hold correct beliefs about the actions of the opponents (see,
e.g., Fudenberg & Levine, 1998, and references therein). This is not enough
for a psychological equilibrium; since payoffs depend on hierarchical beliefs,
players would have to be able to learn the beliefs of others, but unlike actions
beliefs are typically not observable ex post.
Giving up the equilibrium assumption does not, however, necessarily

mean giving up on predictive power. Refer back to the psychological for-
ward induction argument, presented in conjunction with Γ2. Ann and Bob
were presented as performing deductive reasoning regarding one another’s
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behavior and beliefs, and a clear-cut prediction resulted despite that no pre-
sumption of equilibrium was made. However, the story told was informal,
and specific to Γ2 (or, equivalently, Γ4). It is natural to wonder about formal-
izations that are generally applicable. In section 5, we develop a framework
for analyzing interactive epistemology in psychological games, without postu-
lating equilibrium play. In particular, building on an epistemic theme due to
Battigalli & Siniscalchi (2002), we extend Pearce’s (1984) classical notion of
(extensive form) rationalizability to psychological games. The concept cap-
tures psychological forward induction in simple games like Γ2 and Γ4, and in
more complicated games for which long chains of beliefs about beliefs may
be needed to get clear-cut predictions.

3 Psychological Games

In this section we develop a formal framework to analyze dynamic psychologi-
cal games. We introduce the notation on extensive-form games (3.1), model a
universal belief space that accounts for updating beliefs about others’ beliefs
(3.2), and put forth and illustrate our general definition of a psychological
game (3.3).

3.1 Extensive forms with observable actions

To simplify the analysis we restrict our attention to finite multi-stage games
with observable actions and no chance moves. For the time being, we also
rule out incomplete information. These restrictions can be removed, at the
cost of additional complexity in notation (see section 6). We assume that
players move simultaneously at every stage of the game. This is without loss
of generality, because the set of feasible actions of a player may depend on
the actions chosen in previous stages and it may be a singleton. Simultaneous
moves games, perfect information games and repeated games are special cases
(cf. Osborne & Rubinstein, 1994, ch. 6). We use the following notation and
terminology:18

An extensive form with observable actions is a tuple hN,Hi where N =
{1, ..., n} is the player set, and H is the set of feasible histories of the game.
A history of length c is a sequence h = (a1, ..., ac) where each at = (at1, ..., a

t
n)

represents the profile of actions chosen at stage t (1 ≤ t ≤ c). We assume
that a history h becomes public information as soon as it occurs. We also
assume that H is finite. For notational convenience, we let H contain the
empty history, denoted by h0 (the history of length 0). The set of feasible

18See the Appendix for a more rigorous and complete definition of each term.
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actions for player i at history h is denoted by Ai(h) and it may be a singleton,
meaning that i is not active at h. Ai(h) is empty if and only if h is a terminal
history. We let Z denote the set of terminal histories.
Extensive forms with only one active player at each nonterminal history

are graphically represented by trees, following standard conventions (see the
examples in section 2).
For any given extensive form, we let Si denote the set of (pure) strategies

of player i. A typical strategy is denoted by si = (si,h)h∈H\Z , where si,h is
the action that would be selected by strategy si if history h occurred. Define
S =

Q
i∈N Si and S−i =

Q
j 6=i Sj. The set of strategies of player i that allow

history h is denoted Si(h). A similar notation is used for strategy profiles:
S(h) =

Q
i∈N Si(h) and S−i(h) =

Q
j∈N Sj(h). Finally, we let ζ(s) ∈ Z

denote the terminal history induced by strategy profile s = (si)i∈N .

3.2 Conditional beliefs & infinite hierarchies of beliefs

Here we summarize the theory of hierarchies of conditional beliefs due to
Battigalli & Siniscalchi (1999), which should be consulted for proofs, details
and further references. Consider a decision maker DM who is uncertain about
which element in a set X is true. Assume X is a compact Polish space.19

DM assigns probabilities to events E, F , ... in the Borel sigma-algebra B of
X according to some (countably additive) probability measure. Let ∆(X)
denote the set of all such probability measures. As events unfold DM updates
her beliefs in a coherent fashion. The actual and/or potential beliefs of DM
are described by a conditional probability system (see Rênyi, 1955). Let
C ⊆ B denote the collection of potentially observable events (or conditioning
events). DM holds probabilistic beliefs conditional on each event F ∈ C.

Definition 1 A conditional probability system (cps) on (X,B, C) is a func-
tion µ(·|·) : B × C → [0, 1] such that for all E ∈ B, F,F 0 ∈ C
(1) µ(·|F ) ∈ ∆(X),
(2) µ(F |F ) = 1,
(3) E ⊆ F 0 ⊆ F implies µ(E|F ) = µ(E|F 0)µ(F 0|F ).

We regard the set of cps’ on (X,B, C) as a subset of the topological space
[∆(X)]C, where ∆(X) is endowed with the topology of weak convergence of
measures and [∆(X)]C is endowed with the product topology.
¿From now on DM is a player i, and (X,B, C) is specified as follows: ei-

ther X = S−i (a finite set), or X = S−i×Y , where Y is some compact Polish

19A topological space X is Polish if it admits a compatible metric d such that (X, d) is
a complete and separable metric space (see, e.g., Kechris, 1995, p 13).

13



parameter space typically representing a set of opponents’ beliefs; the Borel
sigma-algebra B is implicitly understood,20 and conditioning events corre-
sponds to histories, that is, C = {F ⊆ S−i × Y : F = S−i(h)× Y, h ∈ H} (or
C = {F ⊆ S−i : F = S−i(h), h ∈ H} if X = S−i). Accordingly, the set of cps’
is denoted ∆H(S−i × Y ) a subset of [∆(S−i × Y )]H . We use the following
abbreviation: if conditioning event F corresponds to history h then we write
µ(·|F ) = µ(·|h).
Now take the point of view of an opponent of player i, who is uncertain

about the true (strategy and) cps of other players. The following result shows
that we can take for granted that ∆H(S−i × Y ) is a compact Polish space,
like the given parameter space Y .21 This result is key in our construction of
hierarchical conditional beliefs in that it shows that the domain of higher-
order uncertainty has the same structural properties as the domain of lower-
order uncertainty.

Lemma 2 ∆H(S−i) is a compact Polish space. Furthermore, if Y is a com-
pact Polish space, also ∆H(S−i × Y ) is a compact Polish space.

Hierarchies of cps’ are defined recursively as follows:

• X0
−i = S−i (i ∈ N),

• Xk
−i = Xk−1

−i ×
Q

j 6=i∆
H(Xk−1

−j ) (i ∈ N ; k = 1, 2, ...).

By repeated applications of Lemma 2, each Xk
−i is a cross-product of

compact Polish spaces, and hence it is a compact Polish space in itself.22 A
cps µki ∈ ∆H(Xk−1

−i ) is called k-order cps. For k > 1, µki is a joint cps on the
strategies and (k − 1)-order cps’ of the opponents. A hierarchy of cps’ is a
countably infinite sequence of cps’ µi = (µ

1
i , µ

2
i , ...) ∈

Q
k>0∆

H(Xk−1
−i ). Hier-

archy µi is coherent if the cps’ of distinct orders assign the same conditional
probabilities to lower-order events, that is

µki (·|h) = margXk−1
−i

µk+1i (·|h) (k = 1, 2, ...; h ∈ H).

It can be shown that a coherent hierarchy µi induces a cps νi on the cross-
product of S−i with the sets of hierarchies of beliefs of i’s opponents, a
compact Polish space.

20B is obtained from the product of the discrete topology on S−i and the topology of
Y .
21This depends on two facts: (1) the collection of conditioning events for player i (cor-

responding to H) is at most countable (indeed finite), and (2) each conditioning event
S−i(h)× Y (or S−i(h) if X = S−i) is both closed and open.
22The cross-product of countably many compact Polish spaces is also compact Polish.
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However, νi may assign positive probability (conditional on some h) to
opponents’ incoherence. To rule this out, say that a coherent hierarchy µi

satisfies belief in coherency if the induced cps νi is such that each νi(·|h)
(h ∈ H) assigns probability one the opponents’ coherency; µi satisfies belief
in coherency of order k if it satisfies belief in coherency of order k − 1 and
the induced cps νi is such that each νi(·|h) (h ∈ H) assigns probability
one the opponents’ coherency of order k − 1; µi is collectively coherent if
it satisfies belief in coherency of order k for each positive integer k. The
set of collectively coherent hierarchies of player i is a compact Polish space,
denoted by Mi. We let M

k
i denote the set of of k-order beliefs consistent

with collective coherency, that is, the projection of Mi on ∆H(Xk−1
−i ), and

let Mk
−i =

Q
j 6=iM

k
j ,M−i =

Q
j 6=iMj, M =

Q
j∈NMj.

We have now defined all the elements that form the domain of the psy-
chological utility functions. But is this enough for the analysis of strategic
reasoning? In order to decide on the best course of action player i may need
to form (conditional) beliefs about the infinite hierarchies of (conditional)
beliefs of other players, either because they enter his psychological payoff
function or because his assessment of the behavior and finite-order beliefs
of other players is derived from assumptions, such as “common belief in ra-
tionality”, involving beliefs of infinitely many orders. Does this mean that
we need additional layers of beliefs? No. The following result shows that
the countably infinite hierarchies of cps’ defined above are sufficient for the
strategic analysis because Mi is isomorphic to ∆H(S−i ×M−i), hence each
µi ∈Mi corresponds to a cps on S−i ×M−i:

Lemma 3 For each player i ∈ N there is a one-to-one and onto continuous
function

fi = (fi,h)h∈H :Mi → ∆H(S−i ×M−i)

whose inverse is also continuous. Furthermore, each coordinate function fi,h
is such that for all µi = (µ

1
i , µ

2
i ...) ∈Mi, k ≥ 1

µki (·|h) = margS−i×M1
−i×...×M

k−1
−i

fi,h(µi).

3.3 Psychological Games

We are now ready to state our definition of a psychological game:

Definition 4 A psychological game based on extensive form hN,Hi is a
structure Γ = hN,H, (ui)i∈Ni where ui : Z ×M× S → R is i’s (measurable
and bounded) psychological payoff function.
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The numerical examples examined in section 2 fit this definition: in game
Γ2, u2 depends on z and µ22(·|Trust);23 in game Γ3, u1 depends on z and
µ11(·|z); in game Γ4, u2 depends on z and the initial first-order belief of
player 1, µ11(·|h0); finally, the psychological payoff functions related to Γ5 (a
game with material payoffs) let u1 and u2 depend on z, µ11(·|h0), and s1.
In all these examples, a psychological game is obtained from a material

payoff game hN,H, (πi : Z → R)i∈Ni according to some formula that captures
psychological motivations like regret, feeling let down, or guilt. To illustrate
our framework we provide a few instances of such derivations. We focus on
two-person games.
We can obtain psychological game Γ3 by adding a regret component to

the material payoff of player 1 (Ann). Regret of player i at a terminal history
z can be captured by the difference between the actual material payoff πi(z)
and the maximal expected payoff that could have been obtained ‘with the
benefit of hindsight,’ that is, using the terminal beliefs conditional on z.
Formally, we can measure regret with the (negative) function

Ri(z,µ
1
i (·|z)) = πi(z)−max

si

X
s0j∈Sj(z)

µ1i (s
0
j|z)πi(ζ(si, s0j))

and we obtain the psychological payoff function

ui(z,µ, s) = πi(z) + θiRi(z,µ
1
i (·|z))

where θi is a psychological sensitivity parameter. This formulation can then
be applied to incorporate regret to any extensive game with a given material
payoff function. In game Γ3, e.g., we assumed that π1(c, L) = π1(r, L

0) = 0,
π1(c, R) = π1(r,R

0) = 1, and θ1 = 1.
As exemplified with reference to the material payoff game Γ5, player i

feels ‘let down’ if her actual material payoff πi(z) is lower than the payoff she
expected to get, given her initial first-order beliefs µ1i (·|h0) and her strategy
si. This can be measured by the negative function

Di(z, µ
1
i (·|h0), si) = min

⎧⎨⎩0, [πi(z)−X
s0j

µ1i (s
0
j|h0)πi(ζ(si, s0j))]

⎫⎬⎭ .

Aversion to this feeling can be captured by the psychological payoff function

ui(z,µ, s) = πi(z) + θiDi(z, µ
1
i (·|h0), si),

23µ22(·|Trust) is the conditional second-order belief of player 2 (Bob) used to compute
the expectation β of α, the probability initially assigned by player 1 (Ann) to the strategy
‘Share if Trust’.
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and a guilt motivation can be modeled as aversion to letting the other player
down, which can be captured by the following payoff function:24

ui(z,µ, s) = πi(z) + θiDj(z, µ
1
j(·|h0), sj)

For the special case of the Trust Game, we obtain psychological game Γ4 by
letting θ1 = 0 and θ2 =

5
2
.

4 Equilibrium Analysis

Kreps & Wilson’s (1982) notion of sequential equilibrium has become a
benchmark for the analysis of standard extensive games. Our goal here is to
extend this concept to the class of psychological games defined in section 3.
(The restriction to multi-stage games with complete information simplifies
the presentation, but is actually not essential as we discuss in section 6.) We
next comment on the entailed interpretation of mixed strategies and assess-
ments (4.1), give the main definition (4.2), consider some examples (4.3).

4.1 Randomized strategies and consistent assessments

The equilibrium concept we develop refers to randomized choices. However,
in our interpretation, we exclude explicit randomization (players tossing coins
or spinning roulette wheels). Rather, we will interpret a randomized choice
of a given player i as the common first-order belief of i’s opponents about i
(cf. Aumann & Brandenburger, 1995). This is the analog of the following
characterization of a Nash equilibrium in a standard simultaneous moves
game: a profile (σ1, ..., σn) ∈ ∆(A1)× ...×∆(An) is an equilibrium if for each
player i each action in the support of σi is a best response to σ−i.
In the analysis of extensive form games we focus on behavior strategies

(rather than mixed strategies): σi = (σi(·|h))h∈H\Z ∈
Q

h∈H\Z ∆(Ai(h)). We
interpret a behavior strategy σi as an array of common conditional first-
order beliefs held by the opponents of player i. This interpretation is part of
the notion of ‘consistency’ of profiles of behavior strategies and hierarchical
beliefs defined below.

24We have opted here for a formulation such that i ’s psychological payoff depends di-
rectly on others’ beliefs; cf. the discussion of R2 and Γ2 vs. Γ4 in Section 2. Moreover,
only initial beliefs enter the utility function directly. However, in the strategic analysis the
updated second-order beliefs of i are crucial because they determine the expected payoff
that i maximizes at each history. The reader may want to compare the formulation here
to the related one by Charness & Dufwenberg (2004), which by contrast utilizes GPS’
framework and hence lets only i ’s own initial beliefs influence i ’s utility.
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Kreps & Wilson (1982) argue that an appropriate definition of equilib-
rium in extensive form games must refer to ‘assessments,’ that is, profiles
of (behavior) strategies and conditional (first-order) beliefs. They formulate
a definition of sequential equilibrium in two steps: first they put forward a
‘consistency’ condition for assessments, and then they stipulate that an as-
sessment is a sequential equilibrium if it is consistent and it satisfies sequential
rationality. It turns out that the consistency condition captures the assump-
tions that (a) each player regards his opponents’ strategies as stochastically
independent, and (b) any two players have the same (prior and conditional)
beliefs about any third player (cf. Fudenberg & Tirole 1991b, Battigalli 1996,
and Kohlberg & Reny 1997). We follow a similar two-step approach, adding
to it a third requirement concerning the higher-order beliefs that need to be
specified in psychological games.
In our setup, an assessment is a profile (σ,µ) = (σi,µi)i∈N of behavior

strategies and hierarchies of conditional beliefs. Before defining consistency of
an assessments, we need to define more precisely what we mean by ‘stochastic
independence’. For this, we need to explain that a marginal cps on the
strategies of j is a cps on (Sj,Bj, Cj), where Bj is the power set of Sj and
Cj = {Sj(h), h ∈ H}. The set of such marginal cps’ is denoted by∆H(Sj).The
following definition takes advantage of the simple information structure we
are assuming, i.e. perfect observability of past actions, and allows us to
characterize stochastic independence for cps’s in terms of ‘marginal’ cps’s.

Definition 5 A first-order cps µi ∈ ∆H(S−i) satisfies the stochastic in-
dependence property, if there exists a profile of marginal cps’s (µij)j 6=i ∈Q

j 6=i∆
H(Sj) such that µi(s−i|h) =

Q
j 6=i µij(sj|h) for all h ∈ H, s−i ∈

S−i(h). We let ∆
H
I (S−i) denote the set of first-order cps’s of player i that

satisfy the stochastic independence property.

Note that for each µ ∈ ∆H
I (S−i) we can derive a behavioral profile (σj)j 6=i

as follows: let Sj(h, aj) = {sj ∈ Sj(h) : sj,h = aj} denote the set of strategies
of player j that allow history h and select action aj at h, then

∀j 6= i, ∀h ∈ H, ∀aj ∈ Aj(h), σj(aj|h) = µij(Sj(h, aj)|h). (1)

We are now ready for the main definition of this section:

Definition 6 A profile of hierarchies of cps’ µ = (µi)i∈N∈M is consistent
if
(a) the first-order cps of each player satisfies stochastic independence, that
is,

∀i ∈ N , µ1i ∈ ∆H
I (S−i),
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(b) the marginal first-order beliefs of any two players about a third player
coincide, that is

∀i,∀j,∀k ∈ N , ∀h ∈ H, margSkµ
1
i (·|h) = margSkµ

1
j(·|h),

(c) each player’s higher-order beliefs in µ assign probability one to the lower-
order beliefs in µ itself, that is

∀i ∈ N , ∀k > 1, ∀h ∈ H, µki (·|h) = µk−1i (·|h)× δµk−1−i

where δx is the measure that assigns probability one to the singleton {x}.
An assessment (σ,µ) is consistent if µ is consistent and σ is derived from
first-order beliefs (µ1i )i∈N as in eq. (1).

The justification of the (very strong) conditions (b) and (c) comes from
the classical interpretation of equilibrium beliefs: such beliefs are supposed to
be the end-product of a transparent reasoning process that intelligent players
can perform. Therefore any two players must share the same first-order con-
ditional beliefs about any other player, and every player comes to a correct
conclusion about the (hierarchical) beliefs of his opponents because he is able
to replicate their reasoning process.25 Condition (c) is analogous to a con-
dition used by GPS to define psychological Nash equilibrium. Essentially, it
requires that players hold common, correct beliefs about each others’ beliefs.
This condition is equivalent to the requirement that, for each player i and
each history h, the conditional belief on S−i ×M−i induced by hierarchy µi

assigns probability one to µ−i.
26

4.2 Sequential Equilibrium Assessments

We take the point of view of an ‘agent’ (i, h) of player i who is in charge of
the move at history h and seeks to maximize i’s conditional expected payoff

25Condition (c) yields the implication that, although players update their beliefs about
the opponents’ strategies, they never change their beliefs about what the opponents would
believe conditional on each history. Of course, by observing the actual play-path each
player infers the current actual beliefs of his opponents, but interesting forms of learning
about the beliefs of others are ruled out. For example, condition (c) implies that no player
would ever change his mind about the initial beliefs of his opponents. Without defending
this assumption, we argue that it is in the spirit of the standard definition of sequential
equilibrium. After a hypothetical deviation by player i, this player is assumed to play a
continuation strategy that maximizes his expected payoff against the same (equilibrium)
beliefs that were ascribed to him before the deviation, even if the deviation is irrational
under such beliefs (cf. Reny, 1992).
26That is, (3) holds iff ∀i ∈ N , ∀h ∈ H, fi,h(µi)(S−i ×

©
µ−i

ª
) = 1.
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given the consistent belief profile µ. The expected payoff of i conditional on
history h and action ai ∈ Ai(h) given µ can be expressed as

E [ui|h, ai] =
X

s−i∈S−i(h)

µ1i (s−i|h)
X

si∈Si(h,ai)

µ1ji(si|(h, ai, s−i,h))ui(ζ(s),µ, s)

(2)
where s−i,h is the action profile chosen by i’s opponents at h according to s−i
and µ1ji is the cps about i of an arbitrary opponent j. This specification pre-
sumes that (i, h) assesses the probabilities of actions by other agents of player
i in the same way as each player j 6= i; that explains how µ1ji(si|(h, ai, s−i,h))
shows up in the right-hand-side of the expression.
The expected utility formula (2) is quite different from those used in

the literature on standard games. This is because of the possibility that
psychological payoffs are directly affected by strategies. When psychological
payoffs are not directly affected by strategies E [ui|h, ai] can be expressed in
a more familiar form:

Remark 7 Suppose that psychological payoff functions depend only on ter-
minal histories and beliefs. Then for any consistent assessment (σ,µ)

E [ui|h, ai] =
X
z

Pr
σ
[z|h, ai]ui(z,µ)

where Prσ[z|h, ai] is the probability of terminal history z conditional on (h, ai)
determined by behavioral profile σ.

We now move to the main definition of this section. A consistent as-
sessment is a sequential equilibrium if it satisfies a sequential rationality
condition:

Definition 8 Assessment (σ,µ) = (σi,µi)i∈N is a psychological sequential
equilibrium (PSE) if it is consistent and for all i ∈ N , h ∈ H,

Supp(σi(·|h)) ⊆ arg max
ai∈Ai(h)

E [ui|h, ai]. (3)

The sequential rationality condition (3) only requires that the assessment
be immune to one-shot deviations. In standard games, and more generally in
psychological games where payoff functions do not depend on own strategy,
so that they have the form ui : Z ×M × S−i → R, the ‘one-shot-deviation
principle’ applies. Condition (3) is then equivalent to requiring that the
candidate equilibrium be immune to deviations to arbitrary continuation

20



strategies.27 In subsection 5.3 we show that when the psychological payoff
ui directly depends on si the one-shot-deviation principle does not apply.
The main result of this section is an existence theorem:

Theorem 9 If the psychological payoff functions are continuous, there exists
at least one psychological sequential equilibrium assessment.

A complete proof is contained in the Appendix. Here we only provide a
sketch. Existence can be shown by using ‘Selten’s trick’ (Selten, 1975). Con-
sider ε-perturbed games where there is positive minimal probability of choos-
ing any action at any history, i.e. ε = (εi,h(ai, h)ai∈Ai(h))i∈N,h∈H is a strictly
positive vector such that

P
ai∈Ai(h)

ε(ai, h) < 1 for each history h. For each
strictly positive behavior strategy profile, there exists a corresponding profile
of hierarchies of cps’ µ = β(σ) such that (σ, β(σ)) is consistent.28 For any
ε-perturbed game we define an (agent-form, psychological) ε-equilibrium as
an ε-constrained behavior strategy profile σε such that for each history h and
each player i, a pure action ai that does not maximize the expectation of Ui

(given h, β(σε) and σε) is assigned the minimal probability ε(ai, h). It can be
shown by standard compactness-continuity arguments that each ε-perturbed
game has an ε-equilibrium (cf. the proof of existence of psychological Nash
equilibria in GPS). Fix a sequence εk → 0 and a corresponding sequence of
εk-equilibrium assessments. By compactness, σk has an accumulation point
σ∗. By upper-hemicontinuity of the local best response correspondences,
for each (i, h), σ∗i (·|h) assigns positive probability only to actions that are
best responses to (σ∗, β(σ∗)) at h. Therefore (σ∗, β(σ∗)) is a psychological
sequential equilibrium assessment.

We next show that the PSE concept generalizes the subgame perfect
equilibrium concept of standard games with observable actions (recall that
sequential and subgame perfect equilibrium coincide in games with observ-
able actions). This is a consequence of a more general result about PSE
in games where psychological payoffs depend only on terminal nodes and
beliefs. Suppose that payoff functions depend only on the terminal history

27The ‘one-shot-deviation principle’ is essentially a dynamic programming result. It
holds for finite (standard) games, and more generally for finite-horizon games, and infinite-
horizon games where payoffs are ‘continuous at infinity’. See, e.g., Fudenberg & Tirole
(1991a), pp 108-110.
28By Kuhn’s transformation, a strictly positive behavior strategy profile σ corresponds

to a product measure µ1 × ... × µn on S1 × ... × Sn; each marginal measure µ−i on S−i
yields a first-order cps for i satisfying stochastic independence, and by construction the
first-order cps’s of different players agree; a corresponding profile of hierarchies is obtained
assuming that there is ‘common knowledge’ of beliefs, as in condition (c) of Definition 6.
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and hierarchical beliefs: ui : Z ×M → R. Then, for any fixed profile of
hierarchies of cps’ µ = (µi)i∈N , we can obtain from a psychological game
Γ = hN,H, (ui)i∈Ni a standard game Γ = hN,H, (vi )i∈Ni with payoff func-
tions defined by vi (z) = ui(z,µ).

Proposition 10 Suppose that psychological payoff functions have the form
ui : Z ×M → R. Then an assessment (σ,µ) is a psychological sequential
equilibrium if and only if it is consistent and σ is a subgame perfect (hence
sequential) equilibrium of the standard game Γ .

Proof. First recall that when payoffs do not directly depend on strategies,
the conditional expected payoffs determined by a consistent assessment (σ,µ)
can be expressed as E [ui|h, ai] =

P
z Prσ[z|h, ai]ui(z,µ) (see remark 7).

Let (σ,µ) be a psychological sequential equilibrium. By definition (σ,µ)
is consistent. Since supp(σi(·|h)) ⊆ argmaxai∈Ai(h) E [ui|h, ai] for all i and
h ∈ H\Z, no player can profit from pure or randomized one-shot-deviations
from σ. Since Γ is finite, the one-shot-deviation principle applies, implying
that σ is subgame perfect in Γ . Now suppose that (σ,µ) is consistent; if σ
is a also a subgame perfect equilibrium of Γ then the sequential rationality
condition (3) of Definition 8 is satisfied; therefore (σ,µ) is a psychological
sequential equilibrium.¥

Corollary 11 Suppose that Γ is a standard game (ui depends only on z for
all i). Then, for any behavioral profile σ, (σ,µ) is a psychological sequential
equilibrium for some µ if and only if σ is a subgame perfect (hence sequential)
equilibrium of Γ.

4.3 Examples

We illustrate this definition with three examples. The first example is a
simultaneous move game which serves to illustrate how we can (in essence)
reproduce the spirit of a leading example of GPS’. We then consider two
psychological versions of the Trust Game, which connect back to some of the
key notions previously highlighted in section 2.

Equilibrium beliefs in the Bravery Game.
The Bravery Game is a numerical example used in GPS (p. 66) to show

that a psychological game may have multiple, isolated mixed strategy equi-
libria even if there is only one active player, which is impossible in standard
games. We consider a modified version of their game to illustrate, in a very
simple case, our definition of equilibrium in beliefs. The game is as follows.
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There is only one active player: A1 = {bold,timid}, A2 = {Wait} (2 is in-
active). Since player 2 is inactive we can ignore his payoff function, but his
beliefs do matter. Player 1 is concerned about what player 2 thinks about
him. Acting boldly is dangerous, but it is worthwhile if player 2 expects
player 1 to act boldly. GPS model the situation with a payoff function of
the form u1 : A ×M1 → R. Specifically, let α := µ12(bold|h0) denote the
first-order belief of player 2 about player 1 (a random variable from 1’s point
of view), and let β := E

1
[α|h0] denote (a feature of) the second-order beliefs

of Player 1. The payoff function considered by GPS is

u1(a1,µ1) =

½
2− β, if a1 = bold
3(1− β), if a1 = timid

We modify the payoff function of GPS so that it has the form u1 : A ×
M→ R. Specifically, we let

u1(a1,µ) =

½
2− α, if a1 = bold
3(1− α), if a1 = timid

Clearly, the expectation of u1 given a1 and player 1’s second order belief β is
u1. It is easily checked that there are three equilibria: β = α = 1, β = α = 0
and β = α = 1

2
.29

Trust Game with Guilt Aversion
Consider the psychological game Γ4 (or equivalently game Γ2). Recall

that α = α(µ11) is the probability that Ann assigns to strategy ‘Share if
Trust’ at the beginning of the game, and β =

R
α(µ11)µ

2
2(dµ

1
1|Trust) is the

relevant summary statistic of the second-order beliefs of Bob. We also let
τ = µ12(Trust|h0) denote the initial first-order belief of Bob. In this game an
assessment is summarized by (τ , α, β), where (τ , α) corresponds to a behavior
strategy profile. The indifference condition for Bob is β = 2

5
, the indifference

condition for Ann is α = 1
2
; consistency yields α = β.

The game has three equilibrium assessments: τ = α = β = 1 (trust),
τ = α = β = 0 (no trust), and τ = 0, α = β = 2

5
(insufficient trust). Note

that only the first equilibrium is consistent with forward induction reasoning
(as described in section 2, and further elaborated on in subsection 5.1 below).

29These are essentially the same equilibria obtained by GPS. But they allow for explicit
randomization; thus the first-order beliefs of Player 2 are degenerate on the equilibrium
(mixed) strategy of Player 1, and higher-order beliefs of each player are degenerate on the
equilibrium lower-order beliefs of the other player.

23



Trust Game with Reciprocity
Rabin (1993) illustrates how modeling reciprocity may require belief-

dependent utilities, as kindness and perceived kindness depend on beliefs.
Example 2 in the introduction provides an illustration. Our framework is
adequate for modeling reciprocity in extensive games. To support this claim,
we show how the essence of one particular form of reciprocity theory for ex-
tensive games, Dufwenberg & Kirchsteiger’s, can be captured in an example
which builds on Γ1: Let α, β,and τ be defined as in the previous example.
The key tenets of the theory concern player i’s kindness to player j (Kij), and

i’s belief in j ’s kindness to i (K̂iji). At each history, player i maximizes util-
ity defined by the sum of material payoffs (as in Γ1) and reciprocity payoffs
equal to θi×Kij×K̂iji, where θi is a constant measuring i ’s sensitivity to reci-
procity. Assume that Ann’s sensitivity is θ1 = 0 and that Bob’s sensitivity is
θ2 =

4
3
. One can show that all relevant kindness notions can be reproduced

in our framework and notation; in particular we need the following for Bob:
- Bob’s kindness following Trust (= K21) = −1 or 1, for choices Grab and

Share, respectively,
- Bob’s belief in Ann’s kindness following Trust (= K̂212) =

3
2
− β.

In Γ6, we depict the relevant utilities as conceived by the players when
they move (since Bob is not active at the root we put no utility for him
following Don’t):30

Trust Share

(Ann) 1 −→ (Bob) 2 −→
µ

2
2 + 4

3
(1)(3

2
− β)

¶
| |

Don0t ↓ Grab ↓µ
1
∗

¶ µ
0

4 + 4
3
(−1)(3

2
− β)

¶
Figure 6. Trust Game Γ6 with Reciprocity Payoffs.

Applying Definition 8, one sees that Γ6 has a unique equilibrium assess-
ments: τ = 1, α = β = 3

4
. No ‘pure’ PSE exists.31 The prediction matches

Dufwenberg & Kirchsteiger’s.

30As in the Trust Game with guilt aversion, we can replace Bob’s conditional second-
order belief β with Ann’s initial first-order belief α in Bob’s payoffs, and so obtain a
strategically equivalent game.
31In any PSE we have α = β. If θ2 =

4
3 , the indifference condition for Hugh yields

β = 3
4 . If α = β < 3

4 then K̂212 shoots up, so Hugh prefers Share to Grab, which in PSE
would imply α = β = 1, ... a contradiction. If α = β > 5

6 then λ212 goes down, so Hugh
prefers Grab to Share, implying α = β = 0, ... another contradiction.
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5 Interactive Epistemology

We argued in section 2 that alternatives to equilibrium analysis are even
more worth exploring for psychological games than for standard games. For-
tunately, the definition of a psychological game provides us with all the in-
gredients to analyze strategic reasoning by means of interactive epistemol-
ogy assumptions, that is, assumptions about players’ rationality and what
they believe about each other at any point of the game. In this section, we
show how to express these assumptions in the language of events and belief
operators (5.1), analyze a notion of rationalizability for dynamic psycholog-
ical games under the simplifying assumption of ‘own-strategy independence’
(5.2), and discuss this assumption and how to deal with its removal (5.3).

5.1 States of the world, events, and belief operators

A state of the world is a complete specification of what the players would do
and believe at each history of the game. Note the subjunctive conditional:
game-theoretic analysis does not only concern the actual path of actions and
beliefs, it must also consider how players would react (in terms of beliefs and
choices) to histories that do not actually occur at the true state. The state of
a player is therefore given by his strategy and his hierarchy of cps’, (si,µi).
The set of states for player i is denoted by Ωi = Si ×Mi, and the set of
states of the world is Ω =

Qn
i=1Ωi. We let Ω−i =

Q
j 6=iΩj denote the set

of possible states of i’s opponents. With a slight abuse of notation we often
write Ω = Ωi ×Ω−i with typical element ω = (ωi, ω−i).
An event is a (Borel) subset E ⊆ Ω; its complement is denoted ¬E =

Ω\E. An event about player i is any set of states E = Ei×Ω−i, where Ei is
a Borel subset of Ωi. We let Ei denote the family of events about i. Events
about the opponents of player i are similarly defined, and the collection of
such events is denoted by E−i.
We often use brackets to denote specific events. In particular, for any

function x : Ω → X and value x∗ ∈ X, we use the notation [x = x∗] :=
{ω : x(ω) = x∗}. When x is understood, we simply write [x∗]. For example,
[s∗i ] = {(si,µi, ω−i) : si = s∗i } ∈ Ei is the event “i plays s∗i ”, where it is
understood that x is the projection function on Si, that is x(si,µi, ω−i) = si.
Similarly, [h] =

Q
i∈N Si(h)×Mi is the event that history h occurs.

We follow both GPS and Battigalli & Siniscalchi (2002) in disregarding
players’ beliefs about themselves. At state ω = (si,µi, ω−i), player i would
believe event E = Ωi × E−i ∈ E−i conditional on history h with probability
fi,h(µi)(E−i) (cf. subsection 3.2). Thus {(si,µi, ω−i) : fi,h(µi)(E−i) = 1} is
the event “player i would believe E conditional on h”. E itself may be an
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event concerning the beliefs of i’s opponents.
We use belief operators to represent events about interactive beliefs in a

terse form: a belief operator for player i is a mapping with domain E−i and
range Ei. For any given history h ∈ H, the h-conditional belief operator for
player i is defined as follows:

∀E = Ωi ×E−i ∈ E−i, Bi,h(E) = {(si,µi, ω−i) : fi,h(µi)(E−i) = 1}.

Note that h may be counterfactual at ω, because the strategies played at
ω may not induce history h; in this case “i would believe E conditional
on h” is a counterfactual statement about i’s beliefs (also called ‘epistemic
counterfactual’). Clearly, Bi,h(E) ∈ Ei.32 Note that each Bi,h(·) satisfies
monotonicity [E ⊆ F implies Bi,h(E) ⊆ Bi,h(F )] and conjunction [Bi,h(E ∩
F ) = Bi,h(E) ∩ Bi,h(F )]. Furthermore Bi,h(E) = Bi,h(E ∩ [h]) because i
always believes what he observes.
The basic event we are interested in is players’ rationality. To simplify

our definition of rationality, for the time being we assume own-strategy in-
dependence (we discuss this assumption further in subsection 5.3), meaning
that psychological preferences can be represented by a utility function of the
form

ui : Z ×M× S−i → R. (4)

The expectation of ui conditional on h, given µi and si is

Esi, i
[ui|h] =

Z
S−i×M−i

ui(ζ(si, s−i),µi,µ−i, s−i)fi,h(µi)(ds−i, dµ−i).

Following Pearce (1984), Rubinstein (1991), Reny (1992), and others, we
take the point of view that the basic notion of rationality in extensive form
games refers to plans-of-action rather than strategies; a rational player does
not have to plan in advance what he would do if he deviated from his own
plan. We say that player i is rational at state (si,µi, ω−i) iff si maximizes
i’s conditional expected payoff, given belief hierarchy µi, conditional on each
history allowed by si; more formally, let Hi(s

∗
i ) = {h ∈ H\Z : s∗i ∈ Si(h)}

denote the set of non-terminal histories allowed by a fixed strategy s∗i , then
we require si ∈ r(µi) where

ri(µi) =

½
s∗i : ∀h ∈ H(s∗i ), s

∗
i ∈ arg max

si∈Si(h)
Esi, i

[ui|h]
¾

(5)

The event that player i is rational is Ri = {(si,µi, ω−i) : si ∈ ri(µi)}.
The assumption of own-strategy independence guarantees that ri(µi) can

32For any Borel set Ωi×E−i, Bi,h(Ωi×E−i) is also a Borel set because the h-coordinate
belief function fi,h is continuous (see Lemma 3).
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be obtained via a backward induction algorithm and Ri is a well-defined
nonempty event (see the proof of Lemma 15 in the appendix).
To illustrate how these concepts can be used, without assuming equilib-

rium, we re-examine two psychological versions of the Trust Game. As a
matter of notation, we have to distinguish the event “Bob shares”, which
in this extensive form implies that “Ann trusts Bob,” from the event “Bob
would share if Ann trusted Bob” which is a subjunctive conditional, logically
independent on whether Ann trusts Bob or not. Similar considerations hold
for the other action, Grab. We use bold letters to denote the subjunctive
conditionals (which in this particular case correspond to strategies of Bob),
as in [Share] and [Grab].
Consider the Trust Game with guilt aversion Γ4. The game can be

solved by forward induction reasoning: it is rational for Ann to trust Bob
only if she assigns at least 50% probability to strategy Share, i.e. only if
α ≥ 1

2
, where α : M1 → R is the random variable defined by α(µ1) =

µ11(Share|h0).33 If Bob believes in Ann’s rationality when he has to move
(even if he is ‘surprised’), he infers from Ann’s action Trust that α ≥ 1

2
.

Therefore β ≥ 1
2
, where β : M2 → R is the random variable defined by

β(µ2) =
R
α(µ1)f2,T rust(µ2)(dµ1). His rational response is to share. If Ann

anticipates Bob’s reasoning she trusts him.
The formal counterpart of this argument is as follows (the events listed

are nonempty; we rely on the monotonicity of the belief operators):

R1 =

½
(s1,µ1, ω2) : α(µ1) >

1

2
⇒ s1 = Trust, α(µ1) <

1

2
⇒ s1 = Don

0t

¾
R2 =

½
(ω1, s2,µ2) : β(µ2) >

2

5
⇒ s2 = Share, β(µ2) <

2

5
⇒ s2 = Grab

¾
,

R1 ∩ [Trust] ⊆
∙
α ≥ 1

2

¸
,

B2,T rust (R1) = B2,Trust (R1 ∩ [Trust]) ⊆ B2,T rust
µ∙

α ≥ 1
2

¸¶
⊆
∙
β ≥ 1

2

¸
,

R2 ∩ B2,T rust (R1) ⊆ R2 ∩
∙
β ≥ 1

2

¸
⊆ [Share],

R1 ∩ B1,h0(R2 ∩ B2,T rust (R1)) ⊆ R1 ∩ [α = 1] ⊆ [Trust].
Now consider the Trust Game with Reciprocity Γ6 in Figure 6 (or the

equivalent version with β replaced by α). If one tries to analyze that game

33In some formulas, we have to make explicit the dependence of random variable α on
the state of the world. The same holds for random variable β.
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without an equilibrium supposition, one is at loss for predictive power: with
the given sensitivity parameter θ2 =

4
3
, Bob’s best response depends on

whether β is below or above the threshold
³
3
2
− 1

θ2

´
= 3

4
. This cannot be

resolved by forward induction reasoning, which yields (as explained in sub-
section 4.3) β ≥ 1

2
.

However, if one modifies the game using other values of θ2 one can draw
clear conclusions merely on the basis of backward induction: if θ2 < 2

3
,

Bob’s best response is Grab independently of β, thus R2 ⊆ [Grab] and
R1 ∩ B1,h0(R2) ⊆ [Don0t]; on the other hand, if θ2 > 2, R2 ⊆ [Share] and
R1 ∩ B1,h0(R2) ⊆ [Trust]. Furthermore, a subtle issue arises when 2

3
< θ2 <

1. In this case backward induction cannot pin down Bob’s best response,

which is Grab if β ≥
³
3
2
− 1

θ2

´
; but a forward induction yields β ≥ 1

2
. This

puts an upper bound on how kind Bob believes that Ann is,34 and with
2
3
< θ2 < 1 the best response is Grab. Formally, with these parameter

values R2 ∩ B1,Trust(R1) ⊆ [Grab], B1,h0(R2 ∩ B1,Trust(R1)) ⊆ [α = 0] and
R1 ∩ B1,h0(R2 ∩ B1,T rust(R1)) ⊆ [Don0t].
One can show that, by contrast, the PSE prediction entails that 0 < α =

β =
³
3
2
− 1

θ2

´
< 1

2
, τ = 0. Thus, PSE and forward induction reasoning yield

the same path, but very different predictions about how Bob would revise
his beliefs off that path.

5.2 Rationalizability

The analysis of Γ4 and Γ6 in section 5.1 shows that PSE (like sequential equi-
librium in standard games) need not be consistent with forward-induction
reasoning. Here we provide the tools to perform a forward-induction analy-
sis of general psychological games. Following Battigalli & Siniscalchi (2002),
we first define a ‘strong belief operator’ SBi as follows: SBi(∅) = ∅ and

∀E ∈ E−i\{∅}, SBi(E) =
\

[h]∩E 6=∅

Bi,h(E).

In words, SBi(E) is the event “player i would believe E conditional on every
history that does not contradict E”.35 For example, SBi([sj]) is the event
“player i would believe that player j plays strategy sj at each history h
allowed by sj”.

34The higher β, the more Bob believes that Ann’s choice to trust him is self-interested.
35SBi(·) is not a monotone operator, and it satisfies only a weak form of conjunction

[SBi(E) ∩ SBi(F ) ⊂ SBi(E ∩ F )]. For more on this, see Battigalli & Siniscalchi (2002).
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We will be interested in events of the form SBi(R−i ∩ E), where R−i =\
j 6=i

Rj is the event that i’s opponents are rational and E is either Ω or some

event concerning beliefs, and we will consider assumptions like “everybody
strongly believes that the opponents are rational.” To write this in a simple
form, we define a mutual strong belief operator. Let E denote the collection
of events of the form E =

\
i∈N

Ei (Ei ∈ Ei). For example, R =
\
i∈N

Ri ∈ E .

For each E ∈ E , the event “there is mutual strong belief in E” is defined by

SB(E) =
\
i∈N
SBi

Ã\
j 6=i

Ej

!
. Note that SB(E) ∈ E .

We explore the consequences of the following assumptions:
(0) each player is rational [=R],
(1) mutual strong belief in (0) [=SB(R)],
(2) mutual strong belief in (0) & (1) [=SB(R ∩ SB(R))],
(3) mutual strong belief in (0), (1) & (2) [=SB(R ∩ SB(R ∩ SB(R)))],
and so on.... Such assumptions are more easily expressed with formulas

if we introduce an auxiliary ‘correct strong belief’ operator:

∀E ∈ E , CSB(E) = E ∩ SB(E)

The conjunction of assumptions (0)-(k) above corresponds to the event CSBk(R),
where for any E ∈ E , CSB0(E) = E and CSBk(E) = CSB(CSBk−1(E)).36

Rationalizability is defined by considering the limiting intersection for all k :

Definition 12 A state of the world ω is rationalizable if ω ∈
T

k≥0CSB
k(R).

A strategy is rationalizable if it is part of a rationalizable state of the world.

Battigalli & Siniscalchi (2002) show that the strategies consistent with
event CSBk(R) in standard games are those that survive the first k+1 steps
of Pearce’s (1984) extensive-form rationalizability procedure. This explains
the terminology of Definition 12.37 To illustrate the concept, we can note
that it captures the forward induction solution of game the Trust Game
with guilt aversion (either Γ2 or Γ4). However, that conclusion requires only
two layers of mutual correct strong belief, since the psychological forward
induction solution in Γ2 or Γ4 obtains at all states ω ∈ CSB2(R).
To illustrate the full power of Definition 12, we therefore analyze a Gen-

eralized Trust Game with guilt aversion, reminiscent of the Ben Porath &

36For example, (0) & (1) is R∩SB(R) = CSB(R), (0) & (1) & (2) is R∩SB(R)∩SB(R∩
SB(R)) = CSB2(R), etc.
37Alternative notions of rationalizability for extensive-form games have been explored.

See, e.g., the references in Battigalli & Siniscalchi (1999, 2002).
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Dekel (1992) money-burning game: Ann can either (evenly) distribute the
total surplus of $2 or reinvest it in one out of L projects. Project c = 1, ..., L
yields $2

¡
1 + c

L

¢
. Bob controls the distribution of this larger surplus and

can either Grab or (evenly) Share. We let Trustc denote the action of in-
vesting in project c, and Sharec denote the conditional choice of sharing
if Ann invests in project c. Let αc(µ1) = µ11(Sharec|h0) and βc(µ2) =R
αc(µ

1
1)µ

2
2(dαc(µ

1
1)|Trustc). As before we assume that Ann’s utility is her

material payoff, whereas Bob is averse to guilt. Applying the guilt formula
of subsection 3.3, the players’ utilities if Ann invests in project c are given
by

ui(Trustc, Share) =

µ
1 +

c

L

¶
, i = 1, 2,

u1(Trustc, Grab) = 0,

u2(Trustc, Grab) = 2

µ
1 +

c

L

¶
− θ2αc

µ
1 +

c

L

¶
,

where as before θ2 is Bob’s sensitivity to guilt. Bob (strictly) prefers to share
if and only if θ2βc > 1.
Note that if L = 1 we obtain the material payoff game Γ1, and setting

θ = 5
2
we obtain the psychological game Γ4. Note also that the forward

induction argument used to solve Γ4 (captured by 2 iterations of the CSB
operator) would work for every θ2 > 2, but would not work for lower values
of θ2. On the other hand, in the Generalized Trust Game with guilt aver-
sion rationalizability yields the efficient sharing outcome also for much lower
values of θ2:

Proposition 13 In the Generalized Trust Game with guilt aversion, if θ2 >
1 + 1

L
then, for every rationalizable state (s1,µ1, s2,µ2), s1 = TrustL, s2 =

(Sharec)
L
c=1, αc(µ1) = βc(µ2) = 1 (c = 1, ..., L).

Proof. If Ann chooses project c she signals that αc ≥ L
L+c
, because

she can obtain $1 by not investing. By forward induction [event CSB(R)],
βc ≥ L

L+c
and Bob shares if θ2

L
L+c

> 1, or equivalently θ2 > 1 + c
L
. Since

θ2 > 1 + 1
L
, event CSB2(R) implies that Ann can (and will) secure the

payoff 1 + ĉ(2)
L

> 1, where ĉ(2) is largest c such that θ2 > 1 + c
L
. Now

suppose that CSB2k(R) imply that Ann can (and will) secure the payoff

1 + ĉ(2k)
L

because she correctly believes that Bob would share the yield of

each project c = 1, ..., ĉ(2k). If ĉ(2k) = L, we are done. Otherwise, suppose

that Ann chooses project c > ĉ(2k). This signals that αc ≥ L+ĉ(2k)
L+c

. Event
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CSB2k+1(R) implies that βc ≥ L+ĉ(2k)
L+c

and Bob shares if θ2
L+ĉ(2k)
L+c

> 1, or

equivalently θ2 > 1 + c−ĉ(2k)
L+ĉ(2k)

. Hence CSB2k+2(R) = CSB2(k+1)(R) implies

that Ann can (and will) secure the payoff 1 + ĉ(2(k+1))
L

, where ĉ(2(k + 1)) =

max
n
c ∈ {1, ..., L} : θ2L+ĉ(2k)L+c

> 1
o
. Since 1 + 1

L
≥ 1 + 1

L+ĉ(2k)
, assumption

θ2 > 1 +
1
L
implies that function ĉ(2k) is well-defined and strictly increasing

until it attains its maximum, L. The thesis easily follows. ¥

The following theorem shows that our extension of Pearce’s solution con-
cept to psychological games is well behaved.

Theorem 14 If psychological payoffs are continuous functions and satisfy

own-strategy independence (4), the set
\
k≥0
CSBk(R) of rationalizable states

is nonempty and compact.

Proof. By definition

CSBk+1(R) = CSB(CSBk(R)) = CSBk(R) ∩ SB(CSBk(R)) ⊆ CSBk(R).

[NOTE]We prove below by induction that each element CSBk(R) =
Tk

c=0CSB
c(R)

of the nested sequence
©
CSBk(R)

ª
k≥0 is closed and nonempty. Lemma 3 im-

plies that Ω is compact; thus, the closed subset
\
k≥0
CSBk(R) is compact.

Furthermore, the finite intersection property of compact spaces implies that\
k≥0
CSBk(R) 6= ∅.

The inductive argument relies on the following three preliminary results,
which are proved in the appendix.

Lemma 15 If the payoff function of player i has the form (4), correspon-
dence ri : Mi ³ Si is nonempty valued. If ui is also continuous, ri has a
closed graph and Ri is a nonempty closed set.

Lemma 16 For every closed event E ∈ E, SB(E) is closed.

Lemma 17 Let
©
Ec
ªc=k
c=0

be a decreasing sequence of nonempty events in E
(∅ 6= Ek ⊆ Ek−1 ⊆ ... ⊆ E0), then

Tc=k
c=0 SB(E

c) is also nonempty.

For notational convenience let CSB−1(E) = Ω. We prove by induction
that, for each k ≥ 0, CSBk(R) is nonempty closed and can be expressed as

CSBk(R) = R ∩
Ã

k−1\
c=−1

SB
¡
CSBc(R)

¢!
.
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Basis step. The statement is true for k = 0 because by Lemma 15
CSB0(R) = R is nonempty closed, and by definition R can be expressed
as

R = R ∩ Ω = R ∩ CSB−1(R)
Inductive step. Suppose that the statement is true for each c = 0, ..., k,

then

CSBk+1(R) = CSB(CSBk(R)) = CSBk(R) ∩ SB(CSBk(R))

= R ∩
Ã

k−1\
c=−1

SB
¡
CSBc(R)

¢!
∩ SB(CSBk(R))

= R ∩
Ã

k\
c=−1

SB
¡
CSBc(R)

¢!
.

By the inductive hypothesis each CSBc(R) is nonempty and closed (c =
0, ..., k). By Lemma 16 also SB

¡
CSBc(R)

¢
is closed (c = 0, ..., k). R is

also closed (Lemma 15). Hence CSBk+1(R) is closed.
©
CSBc(R)

ªc=k
c=0

is a
decreasing sequence of nonempty events in E . Therefore Lemma 17 im-
plies that

Tk
c=−1 SB

¡
CSBc(R)

¢
6= ∅. Pick any state ω = (si,µi)i∈N ∈Tk

c=−1 SB
¡
CSBc(R)

¢
. Since the latter is just an event about beliefs, mod-

ifying the strategies in ω we obtain another state in the same event. By
definition of R,

Q
i∈N ri(µi) × {µi} ⊆ R. By Lemma 15, ri(µi) 6= ∅. We

conclude that

∅ 6=
Y
i∈N

ri(µi)× {µi} ⊆ R ∩
Ã

k\
c=−1

SB
¡
CSBc(R)

¢!
.

Hence CSBk+1(R) 6= ∅. This completes the proof of the inductive step and
the proof of the theorem.¥

5.3 Own-strategy dependence and dynamic consistency

So far in section 5 we have assumed own-strategy independence. This as-
sumption allows us to apply standard dynamic programming techniques, and
enables us to prove Theorem 13. The purpose of this subsection is to exhibit
the array of problems one may run into if one does not insist on own-strategy
independence, and to indicate what might be done to fix those problems.
We need to introduce some additional notation. For any s∗i , h ∈ H\Z

and ai ∈ Ai(h), let Si(h, s
∗
i ) denote the set of strategies that reach h and

coincide with s∗i at all histories that do not weakly follow h, let aihs
∗
i denote
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the strategy that selects ai at h and coincide with s∗i at all histories but
h, and finally let re(s∗i ) denote the set of strategies realization-equivalent to
s∗i .

38 Recall that H(s∗i ) is the set non-terminal histories allowed by s
∗
i .

Own-strategy independence implies the following equivalences: for all µi

and s∗i

∀h ∈ H(s∗i ), s
∗
i ∈ arg max

si∈Si(h)
Esi, i

[ui|h] (6)

if and only if

∀h ∈ H(s∗i ), s
∗
i ∈ arg max

si∈Si(h,s∗i )
Esi, i

[ui|h] (7)

if and only if

∃ŝi ∈ re(s∗i ), ∀h ∈ H\Z, ŝi,h ∈ arg max
ai∈Ai(h)

Eaihŝi, i
[ui|h] (8)

The equivalence between (6) and (7) holds because under own-strategy
independence the behavior of si at histories ruled out by h cannot affect
the expected payoff conditional on h. The equivalence between (7) and (8)
is a version of the one-shot-deviation principle: it says that a strategy s∗i is
immune to deviations in subtrees allowed by s∗i if and only if s

∗
i is realization-

equivalent to some strategy ŝi which is immune to one-shot deviations.

(Ann) 1
c . & r

(Bob) 2 2 (Bob)
L0 . ↓ R0 L00 ↓ & R00⎛⎝ L00 R00

∗ ∗
3 1

⎞⎠ ¡∗
2

¢ ¡∗
0

¢ ¡∗
1

¢
Figure 7. The game Γ7

If we drop own-strategy independence these equivalences need not hold.
Consider the game Γ7. Here own-strategy independence fails because the
payoff of Bob at terminal history (c, L0) depends on what he would have
done had Ann chosen r instead of c (Ann’s payoff is suppressed because it
is not relevant to our argument). If bygones were not bygones, Bob would
choose strategy L0L00 at c (we keep using use bold letters to denote conditional
choices, to be distinguished from actual actions). But the best action after
r is R00. Therefore no strategy s2 satisfies condition (6), whereas (7) and (8)

38si is realization-equivalent to s∗i iff ∀s−i, ζ(si, s−i) = ζ(s∗i , s−i). Two realization-
equivalent strategies allow the same set of nonterminal histories and select the same actions
at such histories.
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identify the strategy R0R00 [(7) and (8) are equivalent in every game where
player i moves at most once in any play]. Therefore the equivalence between
(6) and (7) [or (8)] fails.

Trust Share Keep

(Ann) 1 −→ (Bob) 2 −→ (Ann) 1 −→
µ
3
3

¶
| | |

Out ↓ Grab ↓ Dissipate ↓µ
0
0

¶ ⎛⎝ K D
1− 8α 1
5− 6α 5

⎞⎠ µ
1
1

¶

Figure 8. Modified Trust Game with Disappointment Γ8.

Now consider game Γ8. Here Ann’s utility is affected by disappointment
and Bob’s utility by guilt.39 As before α = µ11(Share|h0). Strategy (Trust,
Dissipate) yields 1, and (Trust, Keep) yields 3α + (1 − α)(1 − 8α). If
1 > 3α + (1 − α)(1− 8α), i.e. 0 < α < 3

4
, the equivalence between (7) and

(8) fails: Indeed, no strategy satisfies (7) [or (6)], because (Trust, Keep) is
the only maximizing strategy at history h =(Trust, Keep), whereas (Trust,
Dissipate) is the only maximizing strategy at the root. On the other hand,
a strategy satisfying (8) can be found by backward induction: maximization
at h =(Trust, Share) yields Keep; given Keep, maximization at the root
yields either Out (a reduced form strategy) or (Trust, Keep) according to
whether 3α + (1 − α)(1 − 8α) < 0 or not. In the first case, that is, if
1
4
< α < 1

2
, the strategy obtained by backward induction is Out. But Ann

would be willing to pay up to $1 to be able to commit to strategy (Trust,
Dissipate). Thus, Ann preferences are dynamically inconsistent. Ann is
unable to commit (otherwise this possibility should be modeled explicitly
as a move in the extensive form). Therefore we argue that the relevant
rationality condition is (8).
Note that if α = 1

3
and Bob has correct beliefs about α (at least in

expectation), he is indifferent; hence α = 1
3
can be justified and Out is a

sequential equilibrium outcome.40

It is natural to ask whether rationality condition (8) can always be satis-

39We use the formulas of subsection 3.3 with θ1 = 4 and θ2 = 3.
40Out is also a rationalizable outcome (given the appropriate notion of rationality),

because Trust only signals that either α ≤ 1
4 or α ≥

1
2 . Therefore rationalizability does

not rule out either strategy of Bob, and 1
4 ≤ α ≤ 1

2 is a rationalizable first-order belief.
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fied. The next example shows that the answer is No.

(Ann) 1
c . & r

(Bob) 2 2 (Bob)
L0 . ↓ R0 L00 ↓ & R00⎛⎝ L00 R00

2 2
3 1

⎞⎠ ¡
0
2

¢ ⎛⎝ L0 R0

0 0
0 3

⎞⎠ ¡
2
1

¢
Figure 9. The Psychological Game Γ9

Game Γ9 is a modified version of game Γ9. A strategy satisfies (8) if
and only if it corresponds to a pure Nash equilibrium of the following game
between two selves of Bob:

Bob’\Bob” L00 R00

L0 3,0 1,1
R0 2,3 2,1

But this companion game has no pure equilibrium. On the other hand,
solving for the indifference conditions we obtain a unique mixed equilibrium:
(2
3
L0 + 1

3
R0, 1

2
L00 + 1

2
R00). Working backward, the best reply of Ann is c.

This is the unique PSE of Γ9 (recall that by Theorem 9 every continuous
psychological game has a PSE).
This example shows that in order to make rationality possible in general

psychological games we have to allow for the possibility that a player is uncer-
tain about her own strategy, as we implicitly did in our analysis of sequential
equilibrium in section 4. We can explicitly account for this uncertainty at
the cost of some additional complexity. The first-order cps’ of player i must
be defined as elements of ∆H(S) rather than ∆H(S−i). The construction
of infinite hierarchies on beliefs goes through pretty much as in subsection
3.3. The additional difficulty is that now we have to deal explicitly with a
player’s beliefs about herself when we define rationality conditions. Following
Battigalli & Siniscalchi (1999), one could include in the rationality condition
that each player regards her strategy as stochastically independent of the
strategies and beliefs of the opponents, but unlike that paper we have to al-
low for uncertainty about one’s own strategy. Using a fixed-point argument
one can show that, if ui is continuous, for every hierarchy of marginal cps’
µi,−i about the opponents of player i, there is a strategy si and a cps about
oneself µ1i,i ∈ ∆H(Si) such that (si, µ

1
ii,µi,−i) satisfies the one-shot deviation

property. Using this property in the definition of rationality we can obtain
a generalization of Theorem 14.
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6 Discussion and Extensions

In this section we compare our framework with GPS (6.1) and provide three
extensions, concerning incomplete information (6.2), imperfect observability
of past actions (6.3), and a more general class of preferences whereby the
move at different histories is controlled by different ‘selves’ of the same player
with distinct ‘local’ utility functions (6.4).

6.1 Comparison with GPS

In section 2 we presented our framework as a generalization of GPS. But this
is not literally true. The reason is twofold. First, GPS allow for imperfect in-
formation and chance moves. But, as we show below, these complications can
be included in our framework. Second, GPS allow for explicit randomization
whereas we exclude it. Prima facie, this difference may seem immaterial.
Since GPS, like us, assume that players maximize their expected (psycho-
logical) utility given their beliefs, in their framework there is no incentive
to randomize and it seems that the only role played by randomization is to
guarantee the existence of equilibrium, a result that we obtain by looking at
equilibrium in beliefs. But, unlike standard games, in psychological games
there may be a difference (to a player’s expected utility) between a belief
that assigns probability one to the mixed strategy that, say, pick a or b with
probability 1

2
, and the belief that assigns probability 1

2
to a and 1

2
to b. These

two beliefs are equivalent if psychological utility functions satisfy a linearity
property. In most of the examples and applications of psychological games
we are aware of this property is satisfied.
Let us now look at the version of GPS that is a special case of our

framework: i.e. psychological games with utility functions of the form ui :
Z ×Mi → R, where Mi is the space of infinite hierarchies of initial be-
liefs of player i, and first-order beliefs are probability measures over pure
strategies of the opponents. How much is lost by restricting the analysis
to such games? We have argued that many interesting phenomena such as
sequential reciprocity, psychological forward induction and regret cannot be
analyzed within this class of games. But we can prove a partial equivalence
result. Suppose that the initial beliefs of others enter the utility function:
ui : Z ×

Q
j∈NMj → R. Then there is a psychological game with utility

functions ui : Z ×Mi → R that has the same sequential equilibrium assess-
ments as the former game.41 This does not mean that in this class of games

41The intuition is relatively simple: each initial belief hierarchy µi induces a probability
measure f i(µi) ∈ ∆(S−i ×M−i) which can be used to compute an expectation ui(z,µi)
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conditional-higher are immaterial. First, the equivalence result only con-
cerns sequential equilibria, and we argued that the non-equilibrium analysis
of psychological games is important. Second, our very definition of sequential
equilibrium makes essential use of conditional beliefs.42

6.2 Incomplete information

Unless one models interaction within a family or amongst friends, it is prob-
ably not realistic to assume that players know one another’s psychological
propensities. Many of the examples we have looked at can be criticized on
that ground. For example, in the analysis of game Γ2 (or Γ4) we assumed
that Ann knows that Bob’s sensitivity to guilt is θ2 =

5
2
, which may be a

stretch.43 Another reason to allow for incomplete information is that a player
may care about the beliefs of others about some of his characteristics, which
are not common knowledge, as in the models of Bernheim and Dufwenberg
& Lundholm.
In order to extend the analysis of psychological games to include incom-

plete information, let θ = (θ0, θ1, ..., θn) denote a vector of parameters that
summarize all the payoff-relevant aspects of the game that are not common
knowledge; θi is a component known to player i only (such as his ability, or his
sensitivity to certain psychological motivations), nobody knows θ0. It is com-
mon knowledge that θ belongs to a parameter space Θ = Θ0×Θ1× ...×Θn.
Elements of Θ are called states of Nature. We assume that Θ is a compact
Polish space. We also assume for simplicity that players do not get more
refined information about the state of Nature as the play unfolds, they only
observe the actions chosen in previous stages of the game.
It is relatively easy to generalize our construction of the belief space

in order to include beliefs about the state of Nature: replace X0
−i = S−i

of ui(z,µi, ·). Since in a consistent assessment there is ‘common knowledge’ of the hier-
archical beliefs, no observation will make the players change their mind about the initial
beliefs of the opponents, hence for any consistent assessment ui and ui have the same set
of maximizing actions at each history. (If there are simultaneous moves ui and ui are fully
equivalent, that is, they have the same best response correspondences.)
42If conditional beliefs were not in the language we would have to use an indirect ap-

proach similar to the one adopted by GPS: First define what a psychological Nash equi-
librium is using the ex ante versions of Definitions 6 and 8. Then stipulate that a Nash
equilibrium profile µ is a sequential equilibrium if there is a behavioral strategy profile σ
that is a sequential equilibrium of the standard game with payoff functions ui(·,µ), and
is such that each margSiµ

1
j(j 6= i) is derived from σi via Kuhn’s transformation.

43There is ample evidence in psychology that emotional sensitivities differ among in-
dividuals. See Krohne (2003) for a general discussion. Tangney (1995) discusses guilt
specifically.
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with X0
−i = S−i × Θ−i in the construction of subsection 3.2, where Θ−i =

Θ0×...×Θi−1×Θi+1×...×Θn. Conditioning events for first-order beliefs now
have the form F = S−i(h)×Θ−i (h ∈ H). Let Xk−1

−i be the space of (k− 1)-
order uncertainty for player i; then we obtain the set of k-order cps’. Then
we obtain the set of k-order cps’ ∆H(Xk−1

−i ), and the k-order uncertainty
space Xk

−i = Xk−1
−i ×

Q
j 6=i∆

H(Xk−1
−j ). Lemmata 2 and 3 are easily extended

to this case. Therefore we obtain, for each i ∈ N , the space Mi of infinite
hierarchies of cps’ consistent with collective coherency, which is a compact
Polish space homeomorphic to ∆H(S−i ×Θ−i ×M−i).

44

This is all we need to define the domain of psychological payoff func-
tions, but it need not exhaust the description of the psychological game.
Since states of Nature are exogenous, also players’ hierarchies of initial be-
liefs about the state of Nature are exogenous,45 and the model may specify
assumptions about such exogenous beliefs. For example, one may assume
that beliefs about θ are derived from a common prior ρ ∈ ∆(Θ) and that
this is common knowledge.46 More sophisticated assumptions are allowed
by Harsanyi’s implicit representation of belief hierarchies by means of a Θ-
based type space (cf. Harsanyi, 1967-68, and Mertens & Zamir, 1985). Al-
ternatively, assumptions about exogenous beliefs may be stated explicitly.
Whatever these assumptions may be, they identify subspaces of hierarchies
of cps’ M̂i ⊆ Mi, i = N , which form the basis for the strategic analysis of
the game. The analysis of rationalizability can be quite easily extended to
this more general framework.47 Psychological sequential equilibrium requires
more care because the extension of the definition of consistency to general
games of incomplete information is not obvious.
With this extended framework in place, we can regard (appropriately

discretized versions of) the models of social conformity (Bernheim) and social
respect (Dufwenberg & Lundholm) as psychological games with incomplete
information. These models have a non-standard signaling game structure.
There is only one active player, player 1, who has private information θ
and chooses action a. Player 2 (who represents society) is passive, he only
observes action a and makes inferences about θ. The payoff function of

44See Battigalli & Siniscalchi (1999).
45Posterior beliefs about the state of Nature are endogenous, because they are derived

from joint beliefs about strategies (and beliefs of others) and state of Nature by condition-
ing on histories.
46Even in this simple case, we should distinguish the incomplete information situation

from one where there is asymmetric information about chance moves, especially in the
rationalizability analysis. On chance moves see the next subsection.
47A state of player i is a triple (si, θi,µi); the definition of rationality is almost the

same as in section 5, except that player i takes into accout her knowledge θi of the state
of Nature. See Battigalli & Siniscalchi (2002).
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the active informed player has the form u1 : A × Θ × ∆H(A × Θ) → R
(where H = {h0} ∪ A). More specifically, there is a valuation function
v1 : A×Θ×∆(Θ)→ R such that

u1(a, θ, µ2) = v1(a, θ, µ2(·|a)).

This means that Player 1 cares about the beliefs Player 2 will hold about
private information θ conditional on his action a. (Note that this is an
instance where terminal beliefs (of other players) affect payoffs.)

6.3 Imperfectly observable actions and chance moves

We chose to focus on games with observable actions and no chance moves
for the sake of simplicity. But our concepts and results carry over to the
more general case of games where past actions need not be perfectly ob-
served and chance may play a role (as in GPS). We let N = {0, 1, ..., n}
where index 0 denotes the chance player, and let Hi be the partition of
the the set of histories H into information sets of player i (i 6= 0).48 As-
sume that perfect recall holds. Then it must be the case that the set of
strategy profiles consistent with any information set hi ∈ Hi has the form
S(hi) = Si(hi) × S−i(hi). We have to consider, for the first-order beliefs
of player i, the collection of conditioning events {Fi : Fi = S−i(hi),hi ∈ Hi}.
Let Xk−1

−i be the space of (k − 1)-order uncertainty for player i; then we
obtain the set of k-order cps’ ∆Hi(Xk−1

−i ), and the k-order uncertainty space
Xk
−i = Xk−1

−i ×
Q

j 6=i,0∆
Hj(Xk−1

−j ). The resulting set of infinite hierarchies

of cps’ Mi is homeomorphic to ∆Hi(S−i ×M−i). As in the case of incom-
plete information, the analysis of rationalizability is easily extended, while
the definition of consistency in the sequential equilibrium analysis requires
more care.49

6.4 Multi-self players and sequential reciprocity

We have seen in subsection 5.3 how own-strategy dependence may yield in-
teresting instances of dynamic inconsistency. A more direct way to allow for

48Note that also terminal histories are partitioned into information sets because terminal
beliefs are allowed to play a role.
49In particular, the definition of sequential equilibrium in beliefs requires an enlarged

collection of conditioning events allowing a form of ‘virtual conditioning’ on the information
sets of opponents; otherwise the behavior strategy of player i cannot be derived from the
conditional beliefs of player j. Furthermore, conditions (a) and (b) of Definition 6 must
be extended to this more general framework. One way to do it, although not the most
transparent, is to replace them with the topological condition originally used by Kreps &
Wilson. Similar considerations apply to games with incomplete information.
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dynamic inconsistencies is to adopt a multi-self approach and model a player
preferences with an array of ‘local’ utility functions (ui,h : Z ×M × S →
R)h∈H\Z . The sequential equilibrium analysis of section 4 applies to this
extended framework almost verbatim.
We exemplify with reference to Dufwenberg & Kirchsteiger’s reciprocity

theory. We have already seen how our basic framework could reproduce their
reciprocity theory in an example (Γ6), but to handle general games one needs
the multi-selves approach.50 We consider two-person games for simplicity.
Recall that ceteris paribus player i likes to be kind toward j if she believes
that j is kind toward her. Kindness depends on intentions. In particular,
the kindness of j toward i, Kji, given j’s first-order belief ν ∈ ∆(Si) and j’s
strategy sj is an increasing function of the difference between the expected
material payoff of i (given sj and ν) and a belief-dependent “equitable payoff”
πeji(ν) that j ascribes to i:

Kji(sj, ν) =
X
s0i

ν(s0i)πi(ζ(s
0
i, sj))− πeji(ν).

The kindness of a player toward the co-player depends on his current first-
order belief, which depends on the observed history. Therefore, for any fixed
hierarchy of cps’ µj = (((µ1j(·|h))h∈H , (µ2j(·|h))h∈H , ...), the kindness of j
toward i at history h is Kji(sj, µ

1
j(·|h)), where sj ∈ Si(h). One way to

capture reciprocity motivations is to assume that at each history h player i
maximizes the expected value of a linear combination of her material payoff
and the product between her kindness at h toward the opponent and the
opponent’s kindness at h toward her, that is, i at h maximizesZ
Sj(h)×∆(Si(h))

£
πi(ζ(si, sj)) + θiKij(si, µ

1
i (·|h))Kji(sj, µ

1
j(·|h))

¤
µ2i (dsj, dµ

1
j(·|h)|h).

This means that i’s preferences at history h are represented by the psycho-
logical payoff function

ui,h(z,µ, s) = πi(z) + θiKij(si, µ
1
i (·|h))Kji(sj, µ

1
j(·|h)),

or equivalently by the function

πi(z) + θiKij(si, µ
1
i (·|h))K̂iji(µ

2
i (·|h)),

where K̂iji(µ
2
i (·|h)) =

R
Sj(h)×∆(Si(h))Kji(sj, µ

1
j(·|h))µ2i (dsj, dµ1j(·|h)|h) is i’s

belief in j’s kindness toward i. What we have here is, essentially, a reformu-
lation of Dufwenberg & Kirchsteiger’s model.51

50This is not to suggest that one could not conceive of a different sort of reciprocity
theory, which would not require a multi-selves approach.
51There are inessential differences, concerning e.g. how beliefs and the domain of ma-
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7 Concluding remarks

The utility of decision makers who are motivated by ‘psychological’ consid-
erations such as reciprocity, guilt, social respect, or social conformity may
depend directly on their beliefs (about others’ choices, beliefs, or informa-
tion). In a pioneering contribution, Geanakoplos, Pearce & Stacchetti point
out that traditional game theory does not address such matters, and they
present a model which does. However, their toolbox of ‘psychological games’
incorporates several restrictions that rule out many plausible forms of belief-
dependent motivation. In particular, they cannot address the issue of how
beliefs about the beliefs of others are revised as the play unfolds. We pro-
pose a more general framework, which allows updated higher-order beliefs,
beliefs of others, planned strategies, and incomplete information to influence
motivation. We develop new solution concepts, and provide examples and
existence results.
The range of topics that to date have been explored in models of belief

dependent motivation is limited. We propose that there are a variety of
interesting forms of belief-dependent motivation waiting to be analytically
explored. In his survey paper on “Emotions and Economic Theory”, Elster
(1998) argues that a key characteristic of emotions is that “they are triggered
by beliefs” (p. 49). He discusses, inter alia, anger, hatred, guilt, shame,
pride, admiration, regret, rejoicing, disappointment, elation, fear, hope, joy,
grief, envy, malice, indignation, jealousy, surprise, boredom, sexual desire,
enjoyment, worry, and frustration. Some of the examples he elaborates on
involve higher-order beliefs. He asks (p. 48): “[H]ow can emotions help us
explain behavior for which good explanations seem to be lacking?” We hope
the framework we develop in this paper will be useful for providing answers.

8 Appendix

8.1 Extensive forms with observable actions

Fix a finite player set N and finite action sets Ai (i ∈ N). Let A =
Q

i∈N Ai.

A history of length c is a finite sequence of action profiles h = (a1, ..., ac) ∈ Ac.

History h = (a1, ..., ak) precedes history h = (a1, ..., ac), written h ≺ h, if h
is a prefix (initial subsequence) of h, i.e. k < c and (a1, ..., ak) = (a1, ..., ak).
In this case, we also write h = (h, ak+1, ..., ac). We let c(h) denote the length
of history h. The empty sequence (the history with zero length) is denoted by
h0. By convention h0 precedes every proper history. A finite extensive form with

terial payoff functions are described. However, we have a sketch of proof regarding an
equivalence of equilibrium predictions under the two approaches.
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observable actions is a structure hN,Hi where H ⊆ {h0}∪
³SL

c=1A
c
´
is a finite

set of histories with the following properties:52

• h0 ∈ H.

• ∀h ∈ H, if h ≺ h then h ∈ H.

• ∀h ∈ H, {a ∈ A : (h, a) ∈ H} =
Q

i∈N Ai(h) where

Ai(h) =

(
ai ∈ Ai : ∃a−i ∈

Y
j 6=i

Aj, (h, (ai, a−i)) ∈ H

)

is the set of possible actions of player i at history h.

Note that hH,≺i is a tree with distinguished root h0; the symmetric closure
of ≺ is denoted by ¹.53 We let Z = {h ∈ H :

Q
i∈N Ai(h) = ∅} denote the set

of terminal (or complete) histories.

We can now define the following derived elements:

• Si = {si = (si,h)h∈H ∈ (Ai)
H : ∀h ∈ H\Z, si,h ∈ Ai(h)} is the set of

strategies of player i, S =
Qn

i=1 Si, S−i =
Q

j∈N\{i} Sj .

• ζ : S → Z is the path function, that is, z = (a1, ..., aK) = ζ(s) iff
a1 = (si,h0)i∈N ,∀t ∈ {1, ...K − 1}, at+1 = (si,(a1,...,at))i∈N .

• For any history h ∈ H, S(h) is the set of strategy profiles consistent with
history h, that is, S(h) = {s ∈ S : h ¹ ζ(s)}. Since past actions are
observed, it follows that S(h) =

Qn
i=1 Si(h), where Si(h) is the projection

of S(h) on Si.

8.2 Proof of Theorem 9

We first show how to associate a consistent assessment (σ, β(σ)) to each behavioral
profile σ. We define the first-order beliefs of i corresponding to σ, β1(σ), as follows:
β1i (σ) = µ1i where

∀h ∈ H, ∀s−i ∈ S−i(h), µ
1
i (s−i|h) =

Y
h0 h

Y
j 6=i

σj(sj,h0|h0).

52Cf. Osborne & Rubinstein (1994, Chapter 6).
53Thus, h ¹ h0 iff either h ≺ h0 or h = h0.
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[Recall that we ignore i’s beliefs about himself; thus σi occurs vacuously in the
expression β1i (σ).] It can be shown that µ

1
i = β1i (σ) is a cps that satisfies the

stochastic independence property, and furthermore that

∀h ∈ H, ∀j 6= i, ∀aj ∈ Aj(h), µ
1
ij(Sj(h, aj)|h) = σj(aj|h).

Therefore the first-order beliefs obtained from σ satisfy eq. (1) and conditions (a)
and (b) in Definition 6 (consistency). The profile of belief hierarchies µ = β(σ) is
obtained by condition (c) in Definition 6:

∀i ∈ N , µ1i = β1i (σ),

∀i ∈ N , ∀k > 1, ∀h ∈ H, µki (·|h) = µk−1i (·|h)× δtk−1−i
.

Hence assessment (σ, β(σ)) is consistent. It is clear from the construction that

β(·) is a continuous function.

Definition 18 Fix a strictly positive vector ε = (εi,h(ai)ai∈Ai(h))i∈N,h∈H\Z such

that
P

ai∈Ai(h)
ε(ai) < 1 for all h ∈ H\Z. An ε-psychological equilibrium is

a behavioral strategy profile σ such that ∀i ∈ N , ∀h ∈ H, ∀ai ∈ Ai(h), (i)
σi(ai|h) ≥ εi,h(ai), (ii) ai /∈ argmaxa0i∈Ai(h)Eβ(σ)[ui,h|h, a0i] implies σi(ai|h) =
εi,h(ai).

Let Σε denote the set of behavioral strategy profiles satisfying condition (i)

of Definition 18 above and let r : Σ ³ Σ denote the “ε-best response corre-
spondence” that assigns to each profile σ the subset of profiles in Σ satisfying

condition (ii) of Definition 18, that is,

r ,i(σ)

= {σ0i ∈ Σ ,i : ∀h,∀ai, ai /∈ arg max
a0i∈Ai(h)

Eβ(σ)[ui|h, a0i]⇒ σi(ai|h) = εi,h(ai)},

r (σ) =
Y
i∈N

r ,i(σ).

r ,i(σ) is a nonempty convex subset of ∆(Ai(h)). Since E (σ)[ui|h, ai] is con-
tinuous in (σ, µ) and β is a continuous function, E (σ)[ui|h, ai] is continuous in
σ. This implies that r ,i(σ) has a closed graph. Thus, r (·) is a nonempty con-
vex valued correspondence with a closed graph from the compact and convex setQ

h∈H\Z ∆(A(h)) to itself. By Kakutani theorem r (·) has a fixed point, which
is an ε-psychological equilibrium.

Fix a sequence εk → 0 and a corresponding sequence of εk-psychological equi-
libria σk. By compactness, the sequence (σk) has a limit point σ∗. We prove that
(σ∗, β(σ∗)) is a psychological sequential equilibrium. Assessment (σ∗, β(σ∗)) is
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consistent: to see this just note that, by continuity, β(σ∗) is a limit point of β(σk),
and that the set of consistent assessments is closed. By continuity ofE (σ)[ui|h, ai]
in σ (and finiteness of Ai(h)), for k sufficiently large

arg max
ai∈Ai(h)

E (σ∗)[ui|h, ai] = arg max
ai∈Ai(h)

E (σk)[ui|h, ai].

This implies that

Supp(σ∗i (·|h)) ⊆ arg max
ai∈Ai(h)

E (σ∗)[ui|h, ai]

as required by Definition 8.¥

8.3 Results about interactive epistemology

We start with some preliminaries about rationality and backward induction on

belief-induced decision trees, and then prove Lemmata 15, 16 and 17. Suppose that

psychological payoff functions have the form ui : Z ×M × S−i → R [condition

(4)]. Then, for any fixed hierarchy of cps’ µi, we obtain a well defined decision tree
that can be solved by backward induction: define value functions V

i
: H → R

and V
i
: (H\Z)×Ai → R ∪ {−∞} as follows

• For terminal histories z ∈ Z, let

V
i
(z) =

Z
S−i×M−i

ui(z, s−i,µ−i,µi)fi,z(µi)(ds−i, dµ−i).

• Assuming that V
i
(h, a) has been defined for the immediate successors (h, a)

of history h, let

V
i
(h, ai) =

X
a−i∈A−i(h)

µ1i (S−i(h, a−i)|h)V i
(h, (ai, a−i));

for each ai ∈ Ai(h) and V i
(h, ai) = −∞ for ai /∈ Ai(h);54 then V i

(h) is
defined as

V
i
(h) = max

ai
V

i
(h, ai)

(the maximum is well defined because Ai is finite).

Recall that, for any strategy si ∈ Si, Hi(si) = {h ∈ H\Z : si ∈ Si(h)}
denotes the set of histories allowed by si. The proof of the following result is
available by request:

Lemma 19 Under condition (4) the sequential best reply correspondence ri :
Mi ³ Si can be characterized as follows

ri(µi) =

½
si : ∀h ∈ H(si), si,h ∈ argmax

ai
V

i
(h, ai)

¾
.

54We define V
i
(h, ·) outside Ai(h) for notational convenience.
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8.3.1 Proof of Lemma 15

By Lemma 19 ri(µi) =
©
si : ∀h ∈ H(si), si,h ∈ argmaxai V i

(h, ai)
ª
. Clearly,

the RHS is nonempty. Therefore ri(·) is nonempty-valued and Ri is nonempty.

The belief function fi is continuous (Lemma 3). If ui is also continuous, then
Esi, i

[ui|h] is continuous (in µi), which implies that Ri is closed.¥

8.3.2 Proof of Lemma 16

We must show that for every closed event E ∈ E−i, SBi(E) is closed. SBi(∅) = ∅,
a closed set, by definition. Suppose that E = Ωi × E−i where E−i is nonempty

and closed. Recall that SBi(E) =
\

h:[h]∩E 6=∅

Bi,h(E). For each h,

Bi,h(E) = Si × f−1i,h (∆(E−i ∩ (S−i(h)×M−i)))×Ω−i,

where for any measurable space X and any F ⊆ X we let ∆(F ) denote the set
of probability measures on X that assign probability one to F . Note that if F
is closed, ∆(F ) is also closed. The coordinate function fi,h : Mi → ∆(Ω−i) is
continuous andM−i is closed (Lemma 3); hence E−i ∩ (S−i(h)×M−i), ∆(E−i ∩
(S−i(h)×M−i)) and f

−1
i,h (∆(E−i ∩ (S−i(h)×M−i))) are closed. It follows that

Bi,h(E) (h ∈ H) and SBi(E) are closed.¥

8.3.3 Proof of Lemma 17

Let
©
Ec
ªc=k
c=0

be a decreasing sequence of nonempty events in E (∅ 6= Ek ⊆
Ek−1 ⊆ ... ⊆ E0), we show that

Tc=k
c=0 SB(E

c) is also nonempty. For each c and
i, Ec ∈ E can be written as Ec = Ec

i ×Ec
−i, where E

c
−i ⊆ Ω−i, and by definition

of SB(·)
c=k\
c=0

SB(Ec) =
\
i∈N

c=k\
c=0

SBi(Ωi ×Ec
−i).

Therefore we must show that
Tc=k

c=0 SBi(Ωi×Ec
−i) 6= ∅ (i ∈ N). Let∆H(Ω−i;E

c
−i)

denote the set of cps’ µ ∈ ∆H(Ω−i) such that µ(E
c
−i|h) = 1 for each h such that

Ec
−i ∩ (S−i(h)×M−i) 6= ∅. Note that

c=k\
c=0

SBi(Ωi ×Ec
−i) = Si × f−1i

Ã
c=k\
c=0

∆H(Ω−i;E
c
−i)

!
×Ω−i.

We show below that
Tc=k

c=0∆
H(Ω−i;E

c
−i) 6= ∅. Since fi is onto (Lemma 3), it

follows that f−1i

³Tc=k
c=0∆

H(Ω−i;E
c
−i)
´
6= ∅. Hence

Tc=k
c=0 SBi(Ωi ×Ec

−i) 6= ∅.
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We show that
Tc=k

c=0∆
H(Ω−i;E

c
−i) 6= ∅ with a recursive construction. Say that

h is ‘reached’ by probability measure ν ∈ ∆(Ω−i) if ν(S−i(h)×M−i) > 0. Note
that if h is reached by ν, every predecessor of h is also reached by ν. Say that
µ(·|h) is ‘derived’ from ν, where ν reaches h, if for every Borel set F−i ⊆ Ω−i

µ(F−i|h) =
ν(F−i ∩ (S−i(h)×M−i))

ν(S−i(h)×M−i)
.

Pick any probability measure ν in the (nonempty) set∆(Ek
−i). For each h reached

by ν let µ(·|h) be derived from ν. Thus, µ(·|h) has been defined for a nonempty
set of histories closed w.r.t. precedence (that is, if h is in the set every predecessor
of h is in the set), the set is nonempty because it contains the initial history

h0. Now suppose that µ(·|h) has been defined for some set of histories Ĥ closed

w.r.t. precedence. If Ĥ 6= H, for each h ∈ H\Ĥ such that the immediate

predecessor of h belongs to Ĥ, pick a probability measure νh in the set ∆(E
c(h)
−i ∩

(S−i(h) ×M−i)), where c(h) is the highest index c ∈ {−1, 0, ..., k} such that
Ec
−i ∩ (S−i(h) ×M−i) 6= ∅, and by convention we let E−1 = Ω−i. Let µ(·|h0)

be derived from νh whenever h
0 weakly follows h and is reached by νh. Now

µ(·|h) is defined for a set of histories Ĥ 0 closed under the precedence relation
and strictly larger than Ĥ. Proceed in this way until the whole H is covered.

We claim that the resulting vector of probability measures (µ(·|h))h∈H is a cps

µ ∈
Tc=k

c=0∆
H(Ω−i;E

c
−i).

To see that (µ(·|h))h∈H is a cps we only have to check that the ‘chain rule’ (3) in
Definition 1. Suppose that h precedes h0. To write formulas more transparently, let
C = S−i(h)×M−i, C

0
−i = S−i(h

0)×M−i, µ(·|h) = µ(·|C−i), µ(·|h0) = µ(·|C 0
−i).

Since h precedes h0, S−i(h
0) ⊆ S−i(h), hence C

0
−i ⊆ C−i. If h

0 is not reached

by µ(·|C−i) then (3) holds trivially as 0 = 0. If h0 is reached by µ(·|C−i), then
µ(·|C−i) and µ(·|C 0

−i) are both derived from the same measure — say ν ∈ ∆(Ω−i)
— reaching both h and h0; thus, for every Borel set F−i ⊆ C 0

−i

µ(F−i|C−i) =
ν(F−i)

ν(C−i)
=

ν(F−i)

ν(C 0
−i)

ν(C 0
−i)

ν(C−i)
= µ(F−i|C 0

−i)µ(C
0
−i|C−i).

To see that µ ∈
Tc=k

c=0∆
H(Ω−i;E

c
−i), note that by construction µ(E

c(h)|h) = 1
for all h ∈ H. Suppose that, for any index c ∈ {0, ..., k} and any h ∈ H,
Ec
−i∩(S−i(h)×M−i) 6= ∅. Then c(h) ≥ c and µ(Ec|h) ≥ µ(Ec(h)|h) = 1; hence

µ(Ec|h) = 1 as desired.¥
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