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Abstract 

We study whether and how monetary policymakers may have contributed to 

inflate asset price bubbles and in general what are the potentially complex, non-

linear linkages between short-term policy rates and the size and expected 

durations of equity bubbles. In particular, we extend empirical models of 

periodically collapsing, rational bubbles to test whether and to what extent the 

long cycle of rates at the zero lower bound and of quantitative easing policies 

may have increased the probability of bubbles inflating and persisting, with 

special emphasis on the US stock market. We find that the linkages between S&P 

returns and rate-based indicators of monetary policies contain evidence of 

recurring regimes that can be characterised as one of a persisting vs. one of a 

collapsing bubble. Moreover, the probabilities of financial markets transitioning 

from a bubble to a state of (partial) collapse turns out to depend on both the 

initial, relative size of the bubble and on monetary policy indicators. This 

implies that an easier (tighter) monetary policy will inflate (deflate) a bubble 

through a simple, regression-style effect, but also yield a non-linear, “concave” 

effect by which sufficiently low (high) rates are enough for a bubble to inflate 

(deflate) with high probability. Besides fitting the data, the resulting, 

parsimonious, regime switching models provide an accurate and economically 

valuable predictive performance, even when transaction costs are taken into 

account. 
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1 Introduction 

Since the seminal papers by Blanchard and Watson (1982) and Diba and Grossman (1988), it is 

well known that asset prices may show a tendency to rise substantially over protracted periods 

posing a systematic and increasing deviation from their “fundamental value” (defined as the risk-

adjusted present value of all expected future cash flows). This increase is usually followed by a 

very quick drop in manners which are completely rational and therefore consistent with market 

efficiency: in such episodes, called of rational speculative bubbles, investors may act rationally 

by continuing to pay ever-further-inflated prices, since they were being compensated for it.1 This 

means that any empirically observed deviation of market prices from fundamentals does not 

have to be necessarily imputed to behavioural biases or mispricing caused by psychological 

forces, as these may be consistent with rational behaviour and rationally formed expectations.  

In fact, a literature exists (see, e.g., Roubini, 2006, and references therein) that has shown that 

bubbles that are growing excessively large often lead to economic and investment distortions 

that may be dangerous and likely to eventually trigger bubble bursts whose real and financial 

consequences are severe in real terms. As the experience of the Great Financial Crisis of 2007-

2008 has taught us, they may even lead to outright episodes of financial instability and panics. 

One view exists that optimal monetary policy should pre-emptively deal with asset bubbles—in 

primis, by avoiding that they inflate or at least by limiting their relative size using classical 

monetary policy instruments—rather than just mop up the damages that they cause after they 

burst. Exactly for this reason, even though the mechanics by which rational bubbles arise remains 

an active topic of research (see the discussion in Vogel, 2018), it is of great importance to 

formulate and test models for how bubbles inflate and collapse, also with the goal of isolating 

which drivers and market conditions may be more favourable to bubbles growing and hence to 

their welfare-damaging collapse becoming likely. 

In recent years, many market analysts, industry experts and, at least occasionally, academic 

researchers, have taken turns in blaming the occurrence and persistence of alleged stock 

valuation bubbles on the Federal Reserve’s policy decisions. Among many others, in 2010 the 

 
1 Rational bubbles arise because of the indeterminate aspect of the solutions to rational expectations 
models in asset pricing, which in the case of stock prices is implicitly reflected in the Euler equation. 
The price that an investor is ready to pay depends on the price that she is expected to obtain at some 
point in the future but such an expectation depends on the price expected even further in the future. 
Therefore, the Euler equation simply determines a sequence of prices but fails to “pin down” a unique 
price level unless somewhat arbitrarily one (the modeller) imposes some terminal condition (the 
transversality condition) to obtain the unique solution. However, in general the Euler equation does 
not rule out the possibility that the price may contain an explosive bubble, which is, as a result, fully 
rational. See Campbell et al. (1997) for a textbook-level introduction. 
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then Federal Reserve Chairman, Ben Bernanke, recognised that a few commentators had claimed 

that:  

“(…) excessively easy monetary policy by the Federal Reserve in the first half of the 

decade helped cause a bubble in house prices in the United States, a bubble whose 

inevitable collapse proved a major source of the financial and economic stresses of the 

past two years. Proponents of this view typically argue for a substantially greater role 

for monetary policy in preventing and controlling bubbles in the prices of housing and 

other assets.” (Bernanke, 2010).2 

Among such pundits there were journalists as well as famous colleagues of Chairman Bernanke, 

e.g., Roubini (2006) and Taylor (2013), who claimed that by keeping key policy rates “too low 

and for too long”, the Federal Reserve would have made the financial crisis possible, if not even 

more likely than it would have otherwise been.3 

In this paper, we take this debate seriously and we perform a variety of empirical tests of the 

hypothesis that monetary policy may affect the extent and probability of collapse (or 

equivalently, their expected duration) of rational bubbles in the US stock market. Our tests are 

informed by the maximum likelihood estimates of regime switching regression models 

characterised by time-varying transition probabilities. These are driven by a logistic function that 

is posited to capture the effect of a number of factors (such as the relative size of any previously 

existing bubble, a monthly indicator of percentage abnormal trading volume and a measure of 

sentiment popularised by Baker and Wurgler, 2004, orthogonalized to a range of key 

macroeconomic indicators). The structure of the model receives partial micro-foundation from 

the application of a Taylor expansion to a baseline asset pricing equation when the potential 

existence of a rational bubble and a non-zero probability of its collapse are considered (see 

Appendices A and B for proof). 

Our empirical framework refines and extends earlier work on the estimation of regime switching 

models by Anderson, Brooks and Katsaris (2010), Brooks and Katsaris (2005a, b) and Schaller 

and van Norden (2002) (also in the context of REITs and housing markets, see e.g., Anderson et 

 
2 This quote and considerable, related commentary by high officials at the Federal Reserve during the 
early 2010s were in fact ending the era of what one could call the “Greenspan’s standard”. Such a 
system of beliefs was on the axiom that “(…) given our current state of knowledge, I find it difficult to 
envision central banks successfully targeting asset prices any time soon. However, I certainly do not 
rule out that future work could improve our understanding of asset price behavior, and with it, the 
conduct of monetary policy.” (see Greenspan, 2005). 
3 These suspicions have re-surfaced recently. In the financial press, see, e.g., “Fed Risks Stoking 
Financial Bubble in Drive to Lift Inflation”, by R. Miller, Bloomberg, April 3, 2019; “The Federal Reserve 
is the cause of the bubble in everything”, by M. Howell, The Financial Times, January 16, 2020; “Is the 
bull market about to turn into a bubble?” The Economist, March 11, 2024. 
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al., 2011 and Nneji et al., 2013 and of commodities, see e.g., Brooks et al., 2015) in a precise way: 

we introduce the short-term rate—in its turn, captured by either the Federal Funds rate 

(henceforth, FFR), or Wu and Xia’s (2016) US shadow rate—in both the regime-specific 

conditional mean functions (regressions) and in the logistic function driving the time-varying 

probabilities of a bubble collapsing. In this model, bubbles are stochastic and may either survive 

or collapse. This implies that stock market returns come from two distinct regimes, one of which 

corresponds to surviving bubbles and the other to collapsing bubbles. In addition, because the 

probability of collapse depends on a set of factors, switches in regime will be forecastable using 

such predictors. Besides the empirical realism of such a model extension, we provide a role to the 

short-term rate as this is heavily influenced by monetary policy decisions and therefore its 

presence in the models allows us to investigate the effects of central bank actions on the size of 

bubbles and on their duration. In particular, we formulate an array of hypotheses concerning the 

specific impact of monetary policy on bubbles and on the very persistence of bubbles (i.e., 

whether these are locally stable but globally unstable or both locally and globally stable) that are 

set to depend on the estimated sign and significance of specific coefficients that appear in a 

parametric, non-linear model.  

Using monthly data for a long, 1954-2023 sample, our main empirical finding is that monetary 

policy has historically affected the relative size and duration of equity bubbles in the US. On the 

one hand, a higher short-term policy rate reduces expected stock returns and hence the size of 

any ongoing bubble irrespective of the regime in which the markets may start from on a given 

month. On the other hand, the effect of a higher short-term rate on the transition probabilities of 

the system is complex and non-linear because the data show a strong appetite for higher-order 

terms (powers) in the specification of the logistic transition probability function. Starting from a 

zero-policy rate, a higher rate does reduce the chances of a bubble collapsing, thus increasing its 

duration; in this respect, as claimed by Taylor (2013), very (excessively) low rates do indeed 

inflate bubbles. Yet, as the short-terms rates grow further and higher, the quadratic term in the 

logistic function is estimated to be negative and large and this leads to bubbles to burst, which 

means that sufficiently high rates cause bubbles to collapse. Our maximum-likelihood estimates 

indicate that starting from zero, Federal Fund rates raised up to approximately 2 percent, 

increase the duration of a bubble, similarly to the effect discussed in Galí and Gambetti (2014); 

past 2 percent, higher FFRs reduce its duration and in fact rates of 4 percent or higher cause 

almost deterministically a bubble to burst. 

A similar, nonlinear dynamics also characterises the impact of the initial, relative size of bubbles 

on their duration: for “normal” values of the FFR in the range 1-4 percent, for relative bubble 

sizes exceeding approximately 80% (in absolute terms) of total equity market valuation, the 
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expected duration of a bubble is essentially zero, indicating that large bubbles seed their own 

demise; yet for lower relative bubble sizes, especially in the 20-60% range, such expected 

duration may be high, in the order of several years. A small non-linear effect depresses the 

probability of bubbles surviving when they are initially small (below 20% in relative terms), but 

their expected duration remains in the order of several months. Overall, when the FFR is not set 

to exceed 4 percent (either exogenously or because monetary policy were to react to the bubble, 

a case on which we remain agnostic in policy terms), as a bubble gets relatively large, it is likely 

to persist considerably and get even larger, especially when the FFR is relatively low (between 1 

and 2 percent in annualised terms). In spite of these rich non-linear effects, the estimated regime 

switching models deliver a time-varying system that is globally stable and features a sequence of 

bubbles inflating and collapsing over time. 

Interestingly, such a dynamics occurs within a completely rational framework and in the absence 

of first-order arbitrage opportunities, in which the very mispricing caused by the bubbles 

represent coherent deviations of equilibrium prices from fundamentally-driven ones. These 

results are robust to a range of robustness checks. In particular, when we replace the FFR with 

the shadow rate, our main empirical insights remain intact. Likewise, when the measurement of 

bubbles is replaced by the methodology proposed by Campbell and Shiller (1987) that account 

for the fact that any deviations between observed prices and (present value) dividend-discounted 

ones may be predictable, our main results go through intact. Moreover, we experiment with 

alternative definitions of market sentiment and of abnormal relative trading volume finding 

essentially unchanged results. 

Following the lead of Brooks and Katsaris (2005a), we also test the comparative out-of-sample 

predictive power of regime switching models of periodically collapsing bubbles, finding very 

encouraging results. When the best fitting models that have emerged in Sections 4 and 5 are 

applied in a rather classical, recursive OOS exercise over a 2000-2023 sample, we find that—

irrespective of the loss function assumed and whether this had a statistical or economic nature—

the regime switching models always outperform a number of benchmarks, such as the recursive 

sample mean of S&P 500 returns and single-state regressions that feature bubble indicators. Yet, 

the specific loss function adopted turns out to be of more relevance to discriminate between 

models that account for the impact of monetary policy on regime switching and those that do not. 

The former type of model performs the best when we assume an absolute value loss function or 

Sharpe ratio maximisation under non-negligible aversion to risk within a mean-variance 

framework. 

The rest of this paper is organised as follows. Section 2 presents our research design and provides 

details on the structure of the empirical model to be estimated in Sections 4 and 5. Besides the 
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estimation strategy, this section also lays down the key parametric hypotheses to be tested later 

on. Section 3 describes the data. Section 4 reviews the key findings concerning the simple 

benchmarks without regimes or with constant transition probabilities and then moves on to 

describe our key results for regime switching models with time-varying transition probabilities. 

Section 5 performs robustness checks and shows that our results are essentially unaffected by 

even major changes in the framework of analysis. Section 6 investigates the out-of-sample 

forecasting performance of the models developed under section 4. Finally section 7 concludes. 

 

2 Research Design 

2.1 The Derivation of the Empirical Model 

Following the seminal papers by Evans (1991) and Schaller and van Norden (2002) and Brooks 

and Katsaris (2005a,b), we build an empirical framework that accounts for periodically, partially 

collapsing (positive and negative) speculative bubbles in nominal equity valuations.4 In such a 

model, the probability of collapsing is time varying according to the law of motion (DGP), 

      𝐸𝑡(𝑏𝑡+1) = {

(1 + 𝑟)𝐵𝑡
𝑞(|𝑏𝑡|, 𝑏𝑡

2)
−
1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2)

𝑞(|𝑏𝑡|, 𝑏𝑡
2)

𝑢(𝑏𝑡)𝑃𝑡
𝑎    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.    𝑞(|𝑏𝑡|, 𝑏𝑡

2)

     𝑢(𝑏𝑡)𝑃𝑡
𝑎                                                          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.  1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2),

            (1) 

where 𝑏𝑡 is the size of the bubble relative to the actual price, 𝑃𝑡
𝑎, which can, for instance, be 

expressed as  

𝑏𝑡 ≡ 
𝐵𝑡
𝑃𝑡
𝑎 =

𝑃𝑡
𝑎 − 𝑃𝑡
𝑃𝑡
𝑎 . 

In equation (1), 𝐵𝑡 is the total size of the bubble at time t, 𝑢(𝑏𝑡) is a continuous and everywhere 

differentiable function such that 𝑢(0) = 0 and 0 ≤
𝜕𝑢(𝑏𝑡)

𝜕𝑏𝑡
≤ 1, to be interpreted as the residual 

value of the bubble after it partially collapses (the second regime in (1)) and 𝑞(|𝑏𝑡|, 𝑏𝑡
2) is the 

probability of the bubble continuing to exist. Out of plausibility (see Kindleberger, 1996) and 

earlier empirical evidence (see Hall, Psaradakis, and Sola, 1999)), we assume that 𝑞(|𝑏𝑡|, 𝑏𝑡
2) is a 

function of the absolute value and/or the square of the relative size of the bubble. Equation (1) 

conveys the idea that in the surviving regime, returns should be sufficiently high to compensate 

the investor for the possibility that the bubble may collapse. In fact, extending the work by 

Schaller and van Norden (2002), in Appendix A, we derive (1) as an extension of a standard 

present value model (see LeRoy, 1989, for a review of the early literature on present value models 

 
4 Because in Section 6, we try and convert our model into an operational trading strategy, in the main 
body of this paper we focus on nominal asset prices and fundamentals. 
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in asset pricing research). Importantly, when equation (1) is re-expressed in terms of a nominal 

bubble (𝐵𝑡 = 𝑏𝑡𝑃𝑡
𝑎) and assuming that there are no chances of a collapse (𝑞(|𝑏𝑡|, 𝑏𝑡

2) = 1) then 

we obtain the formulation of a rational, collapsing bubble in Evans (1991) under constant 

required rate of return: 

      𝐸𝑡(𝐵𝑡+1) = (1 + 𝑟)𝐵𝑡, 

which confirms that the rate of growth (hence, gross return) of a bubble is the same as the one 

on a stock so that the bubble will be fully rational and (under constant expected returns or risk 

neutrality) it will satisfy the fundamental Euler condition, as explained in Campbell et al. (1997). 

There are two main approaches to measure the fundamental price, that we shall call 𝑃𝑡 to 

distinguish it from the actual asset price, 𝑃𝑡
𝑎. The first one is adapted from Schaller and van 

Norden’s work and is based on a multiple of current dividends, which is the appropriate approach 

under risk neutrality and when the interest rate is constant and dividends follow a 

homoskedastic log-random walk process with a drift (i.e., the continuously compounded mean 

real dividend growth rate) that is constant. The other definition is based on Campbell and Schiller 

(1987) and allows for the mean dividend growth rate to vary over time. 

The early literature, going back to the ground-breaking work by Kindleberger (1996), had 

reported that the relative size of a bubble is likely to produce an impact on the probability of the 

very bubble to burst, in the sense that as the (relative) size of a bubble increases, the conditional 

probability of a collapse (partial or total) occurring might be affected, within sensible 

boundaries.5 To capture this mechanism, we use a logit specification to incorporate the size of 

the bubble into the probability of a bubble to persist,6 

𝑞(|𝑏𝑡|, 𝑏𝑡
2) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡

2), 

where ℓ is a standard logistic density function. Note that ℓ(𝛽𝑞,0) is the constant probability of 

being in the bubble surviving regime when the size of the bubble is equal to 0, i.e., the probability 

of a bubble to find inception when there is not already a bubble in the market. 𝛽𝑞,𝑏𝑎𝑏𝑠 is the 

sensitivity of the probability of survival of the bubble to the absolute value of the relative size of 

the bubble. The absolute value is taken because when 𝛽𝑞,𝑏𝑎𝑏𝑠 > 0, a sufficiently large negative 

 
5 The functional form of 𝑞(|𝑏𝑡|, 𝑏𝑡

2) should be specified in a way that prevents it from reaching a value 
of 1 because when 𝑞(|𝑏𝑡|, 𝑏𝑡

2) = 1 a rational bubble stops being a periodically collapsing one and is 
instead expected to last forever. The logit function specified later, in fact, ensures that any 
unconstrained estimates satisfy 𝑞(|𝑏𝑡|, 𝑏𝑡

2) ∈ (0, 1). 
6 We follow van Norden and Schaller (1993, 2002) who adopt a probit specification. Compared to the 
Gaussian probit specification in and Brooks and Katsaris (2005a,b), we find that a logit function 
guarantees higher numerical stability and appears to be more in line with the literature on regime 
switching regressions under time-varying probabilities. 
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bubble may render 𝑞(|𝑏𝑡|, 𝑏𝑡
2) negative as 𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡

2 < 0, which would make 

no sense. This practice follows Schaller and van Norden (2002). 

Following the same steps as in Brooks and Katsaris (2005a, 2005b), this framework for the 

dynamics of the conditional expectation of the relative bubble can be transformed into a regime 

switching, state-dependent model for expected returns, in which the driving state is not 

observable, see Appendix A. Expected asset (stock) returns are given, in each state (S and C), by  

𝐸𝑡(𝑟𝑡+1|𝑆) = [𝜇(1 − 𝑏𝑡) +
𝜇𝑏𝑡

𝑞(|𝑏𝑡|, 𝑏𝑡
2)
−
1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2)

𝑞(|𝑏𝑡|, 𝑏𝑡
2)

𝑢(𝑏𝑡)]   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.  𝑞(|𝑏𝑡|, 𝑏𝑡
2) 

           𝐸𝑡(𝑟𝑡+1|𝐶) = [𝜇(1 − 𝑏𝑡) + 𝑢(𝑏𝑡)]                 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.  1 − 𝑞(|𝑏𝑡|, 𝑏𝑡
2),                                    (2) 

where S and C are the survival state and the collapsing regime, respectively; 𝑟𝑡+1denotes the net 

return in interval [t, t + 1] and 𝜇 is the fundamental net return on the stock, i.e., the rate of return 

that would prevail under the conditions that (i) there are no bubbles, and hence (ii) the model 

collapses to a single-state, constant expected return (𝜇) one as in classical finance (see LeRoy, 

1989). Clearly, when the bubble is possible, conditional expected returns are a function of 𝑏𝑡. The 

interpretation of (2) is that as long as the bubble survives, returns will come from both the 

fundamental component (net of the relative size of the bubble, 𝜇(1 − 𝑏𝑡)) and from the need to 

compensate an investor for the losses deriving from a potential bubble collapse, which occurs 

with odds of 1/𝑞(|𝑏𝑡|, 𝑏𝑡
2). Even though the bubbles collapses, such a burst is assumed to be only 

partial and therefore the compensation for the bubble collapsing needs to be reduced by a factor 

that depends on how much of the bubble would be left after a partial burst, 𝑢(𝑏𝑡). 

We now follow the earlier literature and take a first-order Taylor series approximation of 

𝐸𝑡(𝑟𝑡+1|𝑆) and 𝐸𝑡(𝑟𝑡+1|𝐶) in (2) with respect to 𝑏𝑡 around a no bubble steady-state value. 

Dropping the expectation operator 𝐸𝑡, it is straightforward to obtain: 

𝑟𝑡+1
𝑠 = 𝛽𝑠,0 + 𝛽𝑠,𝑏𝑏𝑡 + 𝜀𝑠,𝑡+1 

𝑟𝑡+1
𝐶 = 𝛽𝑐,0 + 𝛽𝑐,𝑏𝑏𝑡 + 𝜀𝑐,𝑡+1 

                                              𝑞(|𝑏𝑡|, 𝑏𝑡
2) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡

2),                                        (3) 

where 𝜀𝑠,𝑡+1 and 𝜀𝑐,𝑡+1 are the unexpected returns at t + 1 in the surviving and collapsing regime, 

respectively. These shocks are assumed to be independent and identically distributed with a 

normal distribution with zero mean but possibly regime-specific variance. The model specified 

in (3) represents our baseline empirical framework. 

Brooks and Katsaris (2005a) and Anderson, Brooks, and Katsaris (2010) have augmented the 

model in (3) by including a measure of abnormal volume, for instance some relative deviation 

from a recent moving average of dollar volumes. The premise is that some measure of unexpected 
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volume would help with the identification of the bubble regime and hence with the estimation of 

its empirical persistence. Bubbles have been historically characterised as periods of hectic 

trading in which investors who “ride” the bubble try to go long in bubbly stocks to re-sell them 

after a short-period of time, therefore to profit from the upward trend caused by the martingale 

process appearing in the (rational) bubble (see, e.g., Liao, Peng, and Zhu, 2022). The reference 

empirical model, then, becomes: 

𝐸𝑡(𝑏𝑡+1)

= {

(1 + 𝑟)𝐵𝑡
𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2)
−
1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2)

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2)

𝑢(𝑏𝑡)𝑃𝑡
𝑎   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2)

𝑢(𝑏𝑡)𝑃𝑡
𝑎                                                                                            𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2),

  (4) 

where 𝑉𝑡
𝑥  is a measure of abnormal volume in period t and 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2) is the 

probability of the bubble continuing to exist, which is a function of the relative value of the bubble 

and of the abnormal volume. (4) shows that the expected value of the bubble in the surviving 

state is a decreasing function of the probability of survival 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2). In other words, 

the greater the probability of collapse, the larger must be the gain on a positive bubble in the 

surviving state in order to compensate the investor for the possibility of collapse. 

Accordingly, the model in (2) can be extended to become: 

𝐸𝑡(𝑟𝑡+1|𝑆) = [𝜇(1 − 𝑏𝑡) +
𝜇𝑏𝑡

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2)

−
1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2)

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2)

𝑢(𝑏𝑡 , 𝑉𝑡
𝑥)]   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.  𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2) 

 𝐸𝑡(𝑟𝑡+1|𝐶) = [𝜇(1 − 𝑏𝑡) + 𝑢(𝑏𝑡, 𝑉𝑡
𝑥)]           𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.  1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2),           (5) 

The economic interpretation of (5) is similar to (2), but now both the probability of a collapse 

and the size of the partial collapse have become a function also of the abnormal volume, for 

instance: 

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡

2 + 𝛾𝑞,𝑣𝑎𝑏𝑠|𝑉𝑡
𝑥| + 𝛾𝑞,𝑣𝑠𝑞𝑟(𝑉𝑡

𝑥)2), 

where 𝛾𝑞,𝑣𝑎𝑏𝑠 and 𝛾𝑞,𝑣𝑠𝑞𝑟 are the sensitivities of the probability of survival to the level and square 

of the measure of abnormal volume. By applying again a first-order Taylor expansion 

approximation around a zero-bubble value and a corresponding normal dollar trading volume 

(which therefore implies a zero abnormal volume), we obtain the following empirical switching 

regression model with time-varying transition probabilities (also indicated as TVPr in what 

follows): 

𝑟𝑡+1
𝑠 = 𝛽𝑠,0 + 𝛽𝑠,𝑏𝑏𝑡 + 𝛾𝑠,𝑣𝑉𝑡

𝑥 + 𝜀𝑠,𝑡+1 

𝑟𝑡+1
𝐶 = 𝛽𝑐,0 + 𝛽𝑐,𝑏𝑏𝑡 + 𝛾𝑐,𝑣𝑉𝑡

𝑥 + 𝜀𝑐,𝑡+1 
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𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡

2 + 𝛾𝑞,𝑣𝑎𝑏𝑠|𝑉𝑡
𝑥| + 𝛾𝑞,𝑣𝑠𝑞𝑟(𝑉𝑡

𝑥)2),               (6) 

where 𝜀𝑠,𝑡+1 and 𝜀𝑐,𝑡+1 are the unexpected returns at t + 1 in the surviving and collapsing regime, 

respectively. Within each regime, these shocks are assumed to be independent and identically 

distributed under a normal distribution with zero mean but possibly regime-specific variance. 

(6) represents an empirical specification that competes with (3) and that will be tested to derive 

the best fitting baseline model for our data. 

 

2.2 Estimation Strategy 

Models (3) and (6) represent theory-backed extensions of the independent regime switching 

regression framework described in Goldfeld and Quandt (1976), in which the transition 

probabilities are time-varying and depend on (a sub-set of) the same exogenous variables that 

also drive the conditional mean returns. 

In order to estimate these models, we use a maximum likelihood approach that exploits both the 

parametric specifications derived as a result of a mixture of ad-hoc assumptions and first-order 

Taylor expansions and of the conditionally independent (but possibly heteroskedastic) nature of 

the shocks. In particular, for instance in the case of model (6), the log-likelihood function is 

𝑙𝑜𝑔ℒ(𝑟𝑡+1|𝜽) =∑𝑙𝑛

𝑇

𝑡+1

[𝑃(𝑟𝑡+1|𝑆)𝜙 (
𝑟𝑡+1 − 𝛽𝑠,0 − 𝛽𝑠,𝑏𝑏𝑡 − 𝛾𝑠,𝑣𝑉𝑡

𝑥

𝜎𝑠
) 

+ 𝑃(𝑟𝑡+1|𝐶)𝜙 (
𝑟𝑡+1 − 𝛽𝑐,0 − 𝛽𝑐,𝑏𝑏𝑡 − 𝛾𝑐,𝑣𝑉𝑡

𝑥

𝜎𝑐
)] 

where 𝜽 is the set of parameters over which to maximise the log-likelihood function, for example, 

𝜽 ≡ [𝛽𝑠,0, 𝛽𝑠,𝑏, 𝛾𝑠,𝑣, 𝛽𝑐,0, 𝛽𝑐,𝑏, 𝛾𝑐,𝑣 , 𝛽𝑞,𝑏𝑎𝑏𝑠,  𝛽𝑞,𝑏𝑠𝑞𝑟,  𝛾𝑞,𝑣𝑎𝑏𝑠, 𝛾𝑞,𝑣𝑠𝑞𝑟, 𝜎𝑠, 𝜎𝑐]’, 𝜙(∙) is the standard normal 

probability density function, and 𝜎𝑠 and 𝜎𝑐 are the regime-specific standard deviations of the 

disturbances in the S and C regimes, respectively. Finally, obviously, 𝑃(𝑟𝑡+1|𝑆) ≡

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2) and 𝑃(𝑟𝑡+1|𝐶) ≡ 1 − 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2) and this is usefully replaced 

inside the expression for the log-likelihood function.  

Following Schaller and van Norden (2002), in Appendix B we derive a list of conditions that must 

hold if the periodically collapsing speculative bubble model has explanatory power for the stock 

market returns:7 

 
7 Technically, Schaller and van Norden propose a sub-set of these conditions as useful to test whether 
the data would contain evidence consistent with either the existence of bubbles or “fads”, where the 
latter are defined as conditions of persisting mispricing that however fail to satisfy the martingale 
conditions proper of bubbles. The subset of conditions for bubbles is: 𝛽𝑠,0 ≠ 𝛽𝑐,0, 𝛽𝑐,𝑏 < 0 and 
𝛽𝑞,𝑏𝑎𝑏𝑠 > 0. 
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𝛽𝑠,0 ≠ 𝛽𝑐,0 

𝛽𝑐,𝑏 < 0 

𝛽𝑐,𝑏 < 𝛽𝑠,𝑏 

𝛽𝑞,𝑏𝑎𝑏𝑠 < 0 and 𝛽𝑞,𝑏𝑠𝑞𝑟 = 0 𝑜𝑟 

𝛽𝑞,𝑏𝑎𝑏𝑠 = 0 and 𝛽𝑞,𝑏𝑠𝑞𝑟 < 0 𝑜𝑟          (model globally stable) 

𝛽𝑞,𝑏𝑎𝑏𝑠 > 0 and 𝛽𝑞,𝑏𝑠𝑞𝑟 < 0 

𝛾𝑠,𝑣 > 0 

𝛾𝑞,𝑣𝑎𝑏𝑠 < 0 

The first restriction implies that exist two distinct regimes as identified by the general “level” of 

average stock returns, as opposed to regimes being simply identified by differences in estimated 

variances (𝜎𝑠 ≠ 𝜎𝑐 or the sharper 𝜎𝑠 > 𝜎𝑐). The constraint 𝛽𝑐,𝑏 < 0 implies that the expected stock 

return should be negative in the collapsing regime or at least inferior to the expected stock return 

in the case a positive bubble persists.8 The third restriction, 𝛽𝑠,𝑏 > 𝛽𝑐,𝑏, ensures that the bubble 

yields higher (lower) returns if a positive (negative) bubble is observed in the surviving regime 

than in the collapsing regime. Of course, the case  𝛽𝑠,𝑏 > 0 > 𝛽𝑐,𝑏 is compatible with the union of 

the first three constraints. 𝛽𝑞,𝑏𝑎𝑏𝑠 < 0 (with 𝛽𝑞,𝑏𝑠𝑞𝑟 = 0) implies that the probability of the bubble 

continuing to exist is expected to decrease as the size of the bubble increases¸ the case emphasised 

in Brooks and Katsaris (2005a) and Anderson et al. (2010); however, when 𝛽𝑞,𝑏𝑎𝑏𝑠 > 0, the model 

turns out to be globally well-behaved provided that 𝛽𝑞,𝑏𝑠𝑞𝑟 < 0 so that the probability of the 

bubble persisting becomes concave in 𝑏𝑡 and hence eventually decreasing so that, when 𝑏𝑡 → +∞, 

then (for given level of abnormal volume) 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2) → 0 and the bubble collapses 

almost surely. The same occurs in the case in which 𝛽𝑞,𝑏𝑎𝑏𝑠 ≤ 0 but 𝛽𝑞,𝑏𝑠𝑞𝑟 < 0. 𝛽𝑞,𝑏𝑎𝑏𝑠 > 0 (while 

𝛽𝑞,𝑏𝑠𝑞𝑟 = 0) and 𝛽𝑞,𝑏𝑎𝑏𝑠 = 0 and 𝛽𝑞,𝑏𝑠𝑞𝑟 > 0, were advocated as the restriction identifying in 

bubbles in Schaller and van Norden (2002) and it implies that the probability of the bubble 

continuing to exist is expected to increase as the size of the bubble increases.9 However, even 

though 𝛽𝑞,𝑏𝑎𝑏𝑠 < 0, the model turns out to be only locally—specifically, for levels of the relative 

 
8 The opposite holds for negative bubbles: the larger is the negative bubble, the more positive the 
returns in the collapsing regime. In the following, also driven by the preliminary empirical results 
obtained in the literature as well as on our data, our comments mostly focus on the case of positive 
bubbles. 
9 Schaller and van Norden find empirical evidence supporting these conditions in their data. 
Everything else equal, this may be problematic because in this parametrisation as a positive bubble 
becomes sufficiently large, then 𝑞(|𝑏𝑡|, 𝑏𝑡

2, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2) → 1, the bubble lasts forever almost surely and 
the model stops being a collapsing bubble one. In any event, in our empirical work, we have failed to 
find any evidence of 𝛽𝑞,𝑏𝑠𝑞𝑟 > 0 holding in our data. 
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bubble size not exceeding some data-driven thresholds—well-behaved even though 𝛽𝑞,𝑏𝑠𝑞𝑟 > 0, 

so that the probability of the bubble persisting becomes decreasing in 𝑏𝑡; when 𝑏𝑡 is not excessive 

(in a range away from zero) then (for given level of abnormal volume) 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2) 

decreases and the bubble is more likely to collapse. 

Finally, 𝛾𝑠,𝑣 > 0 states that, as volume increases, investors perceive an increase in market risk 

which shall need to be compensated by a higher risk premium. The restriction 𝛾𝑞,𝑣𝑎𝑏𝑠 < 0 

indicates that an abnormally high volume signals an imminent collapse of the bubble. 

 

2.3 The Impact of Monetary Policy 

Our paper aims to assess whether, how, and to what extent, monetary policy has historically 

affected the presence of bubbles in aggregate stock valuations in the US. While, it is typical to 

measure the stance of monetary policy through the Federal funds rate, both to place our focus on 

the recent period dominated by quantitative easing (henceforth, QE) policies and to seek a single, 

encompassing indicator of the stance of monetary policy robust to QE strategies that are not 

directly based on changing the Fed funds rate, we also experiment with measuring monetary 

policy using Wu and Xia’s (2016) shadow rate.10 We care for three related aspects: 

1. Whether monetary policy has impacted the formation and/or the collapsing of bubbles in 

US real stock prices; 

2. If so, how has that occurred, i.e., whether impacting the conditional expectations of the 

relative bubble size directly (as often claimed in the popular press, by affecting current 

and expected future discount rates) and/or through effects on the average duration, i.e., 

the probability of the bubble surviving and further growing over time; 

3. Assuming monetary policy has had an impact on the process of bubble formation and 

growth and that it affects their probability of (at least partially) collapsing, the estimated, 

quantitative (as opposed to the qualitative) impact of such an effect. 

With these goals in mind, we extend the empirical framework developed above to become: 

𝑟𝑡+1
𝑠 = 𝛽𝑠,0 + 𝛽𝑠,𝑏𝑏𝑡 + 𝛾𝑠,𝑣𝑉𝑡

𝑥 + 𝜓𝑠,𝑚𝑠𝑟𝑡 + 𝜀𝑠,𝑡+1 

 
10 It is understood that the shadow rate is likely to turn negative to signal a very accommodative 
monetary policy stance when the Fed intensifies her asset purchase operations to try and conduct 
expansionary monetary policy at the zero lower bound. Because the shadow rate series provided by 
Cynthia Wu starts in January 1990 and ends in December 2022, we have backward/forward 
extrapolated this series to the 1954-1989 and 2023 sample by regressing the shadow rate on the 
effective Fed funds rate series for the sample 1990-2022 and then using the estimated coefficient 
values to find the projected shadow rate that would have prevailed given the observed (possibly low 
but never negative) FFR. Section 3 gives results on the procedure and the estimates obtained. 
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𝑟𝑡+1
𝐶 = 𝛽𝑐,0 + 𝛽𝑐,𝑏𝑏𝑡 + 𝛾𝑐,𝑣𝑉𝑡

𝑥 +𝜓𝑐,𝑚𝑠𝑟𝑡 + 𝜀𝑐,𝑡+1 

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2)

= ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡
2 + 𝛾𝑞,𝑣𝑎𝑏𝑠|𝑉𝑡

𝑥|+𝛾𝑞,𝑣𝑠𝑞𝑟(𝑉𝑡
𝑥)2 + 𝜓𝑞,𝑚𝑎𝑏𝑠|𝑠𝑟𝑡|

+ 𝜓𝑞,𝑚𝑠𝑞𝑟𝑠𝑟𝑡
2),                                                                                                                     (7) 

where 𝑠𝑟𝑡 stands for “short-term rate” (i.e., either the FFR or the projected shadow rate), 𝜓𝑠,𝑚 and 

𝜓𝑐,𝑚 are the coefficients that load realised stock returns on the short rate, and 𝜓𝑞,𝑚𝑎𝑏𝑠 and 𝜓𝑞,𝑚𝑠𝑞𝑟 

measure the effect of the short rate on the probability of the bubbles surviving and hence of the 

probability of collapse. Appendix A provides a heuristic derivation of such an extended model to 

include the short rate. The model is estimated by ML using the approach outlined in Section 2.2. 

While some earlier literature and much popular press (see the Introduction for a few examples) 

has debated whether 𝜓𝑠,𝑚< 0 so that an expansionary monetary policy would cause higher 

expected returns and hence, at least on average, contribute to fuel stock bubbles, in our paper we 

test two alternative hypotheses of interest:11 

H0-1: 𝜓𝑞,𝑚𝑎𝑏𝑠 = 𝜓𝑞,𝑚𝑠𝑞𝑟 = 𝜓𝑠,𝑚 = 0, i.e., monetary policy has no impact on stock prices, 

either directly in the bubble regime or indirectly through the probability of a bubble 

surviving.12 

HA-1: 𝜓𝑞,𝑚𝑎𝑏𝑠 ≠ 0 
and

or
 𝜓𝑞,𝑚𝑠𝑞𝑟 ≠ 0 

and

or
 𝜓𝑠,𝑚 ≠ 0, i.e., monetary policy has either a direct 

impact on expected returns or has an indirect impact through the duration of bubbles, or 

both. 

Under HA-1 we can further distinguish four additional sub-cases, that we shall call HA-1a, HA-1b, 

HA-1c, and HA-1d:13 

HA-1a: 𝜓𝑞,𝑚𝑎𝑏𝑠 < 0, 𝜓𝑞,𝑚𝑠𝑞𝑟 = 0, 
and

or
 𝜓𝑠,𝑚 < 0, i.e., expansionary monetary policy inflates 

bubbles directly and makes them likely to survive longer (hence allows them to inflate 

more) i.e., also indirectly. In this case, at least qualitatively, easy monetary policies may 

carry a heavy burden of responsibility for the historical record of US stock bubbles. Of 

course, the converse is that monetary tightening deflates bubbles directly and makes 

 
11 In what follows, H0–n refers to a null hypothesis and HA–n to the corresponding alternative 
hypothesis that we find useful to describe for its economic implications. 
12 The model mostly implies predictions on the impact of monetary policy in the bubble regime but it 
is realistic to also expect that 𝜓𝑐,𝑚 = 0 holds. 
13 Needless to say, the following sub-cases fail to exhaust the domain of possibilities, for instance 

𝜓𝑞,𝑚𝑎𝑏𝑠 > 0,𝜓𝑞,𝑚𝑠𝑞𝑟 > 0  or 𝜓𝑞,𝑚𝑠𝑞𝑟 < 0, 𝜓𝑞,𝑚𝑎𝑏𝑠 < 0 fail to be featured in our list. The former 

case appears problematic because a sufficiently high short rate would then, ceteris paribus, lead to 

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟

𝑡
|, 𝑠𝑟𝑡

2) → 1 and to a bubble persisting forever; the latter case is instead 

possible and simply illustrates an extremely strong and convex impact of monetary policy on bubbles. 
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them likely to burst earlier (hence allows them to inflate over shorter periods). 

HA-1b: 𝜓𝑞,𝑚𝑎𝑏𝑠 > 0,  𝜓𝑞,𝑚𝑠𝑞𝑟 = 0, 
and

or
 𝜓𝑠,𝑚 > 0, i.e., expansionary monetary policy deflates 

bubbles directly and makes them less likely to survive (hence allows them to inflate less). 

Importantly, under this alternative hypothesis, monetary policy does not necessarily 

actively fight bubbles, because of the contrasting effects it yields. A monetary tightening 

would instead inflate bubbles directly but make them less likely to survive (hence allows 

them to inflate less). 

HA-1c: 𝜓𝑞,𝑚𝑎𝑏𝑠 > 0, 𝜓𝑞,𝑚𝑠𝑞𝑟 < 0 which implies a concave relationship between 

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) and the short rate and 𝜓𝑠,𝑚 < 0, so that the short rate 

eventually (as it becomes large, say in absolute value to encompass the case of the shadow 

rate) increases the probability of a bubble to burst, while also exercising a direct, 

moderating effect on the conditional mean returns as long as the bubble persists. Of 

course, a monetary expansion of intermediate strength would increase the chances of a 

bubble to last even though eventually (as the short-rate declines towards zero) such an 

effect may be moderate, while also exercising a direct, triggering effect on the conditional 

mean returns as long as the bubble persists. 

HA-1d: 𝜓𝑞,𝑚𝑎𝑏𝑠 < 0, 𝜓𝑞,𝑚𝑠𝑞𝑟 > 0 which implies a convex but non-monotonic relationship 

between 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) and the short rate and 𝜓𝑠,𝑚 < 0. In this case, the 

short rate—specifically, for levels of the short rate near zero, on both sides of it in the case 

of the shadow rate—exercises a well-behaved effect on the probability of the bubble to 

burst;14 because 𝜓𝑠,𝑚 < 0, the short rate also exercises a direct effect on the conditional 

mean returns. Yet, in this case, 𝜓𝑞,𝑚𝑎𝑏𝑠 < 0, 𝜓𝑞,𝑚𝑠𝑞𝑟 > 0 are globally non-viable as when 

the short rate grows, the bubble is made infinitely persistent. 

 

2.4 Measuring Deviations from Fundamental Prices 

There are two different approaches proposed in the earlier literature and concerning the 

measurement of 𝑏𝑡, i.e., the size of the bubble relative to the actual price. The first method follows 

Brooks and Katsaris (2005a,b) and takes steps from the classical Gordon’s (1962) present value 

formula, 

 
14 This means that the probability of the bubble persisting is decreasing in 𝑠𝑟𝑡 so that when 𝑠𝑟𝑡 is in a 
range away from zero but also within given threshold (for given level of abnormal volume and relative 

bubble dimension), 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟

𝑡
|, 𝑠𝑟𝑡

2) decreases and the bubble is more likely to 

collapse. 



15 

                                                                             𝑃𝑡 =
𝐷𝑡
𝑟 − 𝑔

                                                                          (8) 

where 𝑔 is the dividend growth rate. Under the assumption that the stock market prices obey the 

following period-to-period (risk-neutral) arbitrage condition, 

𝑃𝑡 =
1

1 + 𝑟
𝐸𝑡(𝑃𝑡+1 + 𝐷𝑡+1), 

in which 𝑟 is the required rate of return (supposed to be constant and equal to the risk-free 

interest rate) and that the log-dividends (ⅆ𝑡 ≡ 𝑙𝑛𝐷𝑡) follow a random walk with a drift 

ⅆ𝑡 = 𝛼 + ⅆ𝑡−1 + 𝜎𝑑𝜖𝑡 

the fundamental price is, then, shown to be a simple multiple of current dividends, 

𝑃𝑡 = 𝜌𝐷𝑡  

where 

𝜌 = [
1 + 𝑟

ⅇ
(𝛼+

𝜎𝑑
2

2 )

− 1]

−1

 

The proportional deviation of actual price (𝑃𝑡
𝑎) from the fundamental one (𝑃𝑡) is: 

𝑏𝑡 =
𝑃𝑡
𝑎 − 𝑃𝑡
𝑃𝑡
𝑎 = 1 − 𝜌

𝐷𝑡
𝑃𝑡
𝑎 , 

in which 𝜌 is approximated with the sample mean of the price dividend ratio 𝑃
𝑎

𝐷⁄
̅̅ ̅̅ ̅̅ ̅ so that the 

relative bubble 𝑏𝑡 can be alternative expressed as: 

                                                                            𝑏𝑡 = 1 −
𝑃𝑎

𝐷⁄
̅̅ ̅̅ ̅̅ ̅

𝑃𝑡
𝑎

𝐷𝑡
⁄

,                                                                 (9) 

i.e., one minus the ratio between the historical mean price-dividend ratio and the time t price-

dividend ratio so that a currently above average price-dividend ratio becomes the source of a 

positive bubble estimate. 

A second method has been proposed by Campbell and Shiller (1989) and adapted to estimate 

the size of bubbles by Schaller and van Norden (2002). Because this method implies a more 

tightly parameterised model to provide guidance to extract estimates of 𝑏𝑡, it is used to check the 

robustness of our main result to equation (9) and it is presented in Section 5.5. 

 

3 The Data 

Our baseline sample of data covers the period June 1954 – December 2023, for a total of 836 
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observations. The start date of the study is determined by the availability of data on (the existence 

of) the effective Fed funds rate. However, the 67-year long monthly sample appears to be long 

enough to cover a number of (alleged) bubbles, followed by stock market crashes and recoveries, 

for instance, the two oil shocks in the 1970s, the 1986-1988 market surge ended with the 

spectacular crash of October 1987, the dot.com and the sub-prime real estate bubbles that have 

occurred at the turn of the millennium and then, at least allegedly, between 2005 and 2008. As 

mentioned in the Introduction, also recent media commentary has discussed the probability of a 

stock market bubble inflating after 2021.  

The data concerning stock prices, dividends and earnings and (where needed) the 1-month 

Treasury bill risk-free rate are kindly made available by Bob Shiller through his personal web 

site.15 Prices, dividends and earnings all concern the Standard & Poor’s composite index. The data 

on the effective Fed fund rates are instead sourced from FRED II® from the Federal Reserve Bank 

of St. Louis. 

The abnormal dollar volume 𝑉𝑡
𝑥  is computed as the monthly percentage difference between the 

dollar volume concerning the stocks in S&P index and a 12-month moving average built starting 

from the same monthly series.16 In a few specifications, we try an alternative proxy for the 

rational “trading exuberance” (see Shiller, 2015) that is allegedly typical of bubbles and resort to 

Baker and Wurgler’s (2006, 2007) orthogonalized sentiment index. In particular, BW’s index 

depends on trading volume (the turnover ratio), the number of initial public offerings (IPOs) and 

the average first-day returns on IPOs, the proportion of equity issues relative to the total equity 

and debt issues, the average discount of closed-end fund prices relative to their net asset values, 

the dividend premium (the difference in market-to-book ratios between dividend-paying and 

non-dividend-paying stocks) and the net inflows into mutual funds.17 In Section 5.4 of the 

robustness tests we also experiment with raw, non-orthogonalized version of BW’s sentiment 

indicator. 

The shadow Fed fund rate monthly series for the United States is taken from Cynthia Wu’s web 

site.18 Because the shadow rate has been formally estimated by Wu and her co-authors only 

 
15 See http://www.econ.yale.edu/~shiller/data.htm. 
16 In Section 5.3 of the robustness checks, we have also experimented with a 6-month moving average 
of volume. 
17 The orthogonalized version of BW’s index is designed to isolate pure sentiment effects by removing 
influences from fundamental economic variables, i.e., it is adjusted to be uncorrelated with 
macroeconomic variables such as industrial production, employment, inflation and short-term rates. 
Moreover, note that the notion of volume employed by BW when constructing their index is different 
from our notion or abnormal, relative (percentage) monthly volume, even though the two variables 
(hence, to some extent also BW’s index) are expected to be positively correlated. 
18 See https://sites.google.com/view/jingcynthiawu/shadow-rates. 
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starting in January 1990 (due to the availability of interest rate options data), we have regressed 

the available January 1990 – February 2022 shadow Fed fund rate on the effective Fed fund rate, 

obtaining the fitted values (standard errors are in parentheses): 

𝑠�̂�𝑡 = 0.062
(0.040)

+ 0.958
(0.010)

× 𝑓𝑓𝑟𝑡        (𝑅
2 = 0.972) 

We use this estimated model to compute the implicit shadow rate also with reference to the June 

1954 – December 1989 and then March 2022 – December 2023 periods, even though our finding 

is that over these sub-samples the correlation between the fitted shadow rate (which is always 

positive) and the effective Fed fund rate is practically 1 (0.989). 

Table 1 reports the basic summary statistics for our data set. The S&P 500 (excess) returns show 

statistics in line with common knowledge on the behaviour of aggregate stock returns in the 

United States. Their mean is 11% (7% in the case of excess returns) in annualised terms, with a 

median of 14.6% (10.6%) that considerably exceeds the mean, an indication of substantial left-

skewness (-0.90). Both net and excess returns display kurtosis in excess of a standard Gaussian 

distribution (6.6). The stock return standard deviation (e.g., 3.5% per month) implies an 

annualised volatility of 12.2% which corresponds to the low end of the typical, historical values 

but that matches some recent empirical evidence (see, e.g., Cooper and Maio, 2019). The S&P 

index is also characterised by relatively high price-dividend ratios (on average of almost 34), 

even though peaks in excess of 40 have been reached on a few occasions. In fact, the price-

dividend ratio is marked by a substantial volatility of almost 9 and by positive skewness, as one 

would expect given that this ratio can only be positive. 

The statistics concerning the short-term rates driven by monetary policy are all rather similar, 

with the exception of those concerning the shadow rate, because the latter covers a much shorter 

sample period in which this option-implied policy rate measure is explicitly allowed to become 

negative (as much as -0.25% per month) to capture the expansionary effects of quantitative 

easing policies. For instance, the FFR is characterised by annualised mean and median of 4.6% 

and 4.2%, respectively, and by an annualised volatility of just 1% per year, which is to be 

expected. The short-term rates are also characterised by positive excess kurtosis and 

substantially positive skewness, as one would expect of nominal rates subject to a zero lower 

bound. Because it just spans less than half of the overall sample and this period was characterised 

by low rates, the shadow rate series reports much lower mean and median rates (2.3 and 2.1%, 

respectively, in annualised terms) than FFR or 1-month T-bill rates, and zero skewness as a result 

of the fact that the zero lower bound is essentially removed in this case. 

Finally, Figure 1 presents the estimate of the relative bubble derived from equation (9) applied 

to the data above (the boldfaced blue curve, measured on the left scale) plotted along with the 
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monthly FFR (measured on the right scale). The figure also displays the estimate of the relative 

bubble obtained from a Campbell and Shiller’s (1987) method to be used in Section 5.5 as a 

robustness check (the dashed red curve). The latter method allows predictability patterns in 

stock and dividend changes to be captured. Visibly, the two measures of 𝑏𝑡 are strongly, positively 

correlated, the only limited weakening is occurring between 1978 and 1982. The bubble is almost 

always positive, with the notable exception of the late 1970s and early 1980s, where it turns 

negative and relatively large, exceeding in a few years 50% of the overall fundamental evaluation. 

The only other episode of a persistent under-valuation (arguably, of 𝑏𝑡 < 0) occurs in occasion of 

the Great Financial Crisis, in 2008-2009. The Covid-19 pandemic shock appears as a transitory 

two-month dip occurred in February and March of 2020. A massive (also in this case, exceeding 

by 50% of the fundamental valuation between 1999 and 2001) bubble that has lasted more than 

a decade occurred between 1993 and 2006, even though it started deflating after 2002. A simple, 

bird’s eye comparison between the dynamics of both estimates of 𝑏𝑡 and the FFR, alerts us of the 

fact that there seems to exist a clear negative correlation between the FFR and the relative size 

of the S&P bubble. The empirical question is whether and how simple models of correlations, 

such as linear predictive regressions may suffice to capture such a relationship. 

 

4 Main Empirical Results 

4.1 Benchmark Models 

Table 2 reports full sample estimates of a range of models that include six benchmark models. A 

benchmark model consists of a restricted version of the general empirical model of periodically 

collapsing, rational bubbles presented in Section 2. Models 1 – 3 in Table 2 are benchmarks 

because they are single-state, linear regression models that exclude the occurrence of regimes. 

This means that there are no collapsing bubbles and instead these go on forever: 

                                                        𝑟𝑡+1 = 𝛽0 + 𝛽𝑏𝑏𝑡 + 𝛾𝑣𝑉𝑡
𝑥 + 𝜓𝑚𝑠𝑟𝑡 + 𝜀𝑡+1                                       (10) 

where 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟

𝑡
|, 𝑠𝑟𝑡

2) = 1. Of course, if 𝛽𝑏 ≫ 0 bubbles acquire a self-sustaining 

nature, as bigger bubbles increase stock returns and push prices higher, even though the model 

in (10) is not an autoregressive one in a technical sense and the definition of relative bubbles in 

equation (9) involves dividends, that are instead not featured in model (10). The opposite occurs 

when 𝛽𝑏 < 0 as large relative bubbles depress expected returns and hence limit the extent of 

subsequent bubble dynamics. Importantly, 𝜓𝑚 captures the impact of the short-term rate on 

aggregate stock returns, even though in this case of a standard linear regression, the sign of 𝜓𝑚 

can be hardly mapped into a claim on the effects of monetary policies on bubbles. Model 1 in 

Table 2 consists of a restricted version of the regression in (10) in which 𝜓𝑚 = 0. Model 3 is a 
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version of the regression (10) extended to Baker and Wurgler’s sentiment index. Note that across 

models 1 – 3, the variance of the regression residuals is assumed to be constant over time and 

hence the model is homoscedastic. 

Table 1 shows that these linear benchmarks provide rather a poor fit to S&P index returns. The 

Hannan-Quinn’s information criteria (henceforth, HQIC; particularly suitable to model selection 

applied to non-linear frameworks, see, e.g., Psaradakis et al., 2009) turns out to be far above those 

achieved by the remaining models, including those offered by simple regime switching model in 

which the constant probability q is an estimable constant. For instance, the best among these 

three regressions, i.e., model 1, scores a H-Q criterion of 5.356 which is massively above the 5.136 

achieved by the heteroskedastic switching regressions 4 and 5 and above the 5.165 of the 

homoscedastic model 6. Moreover, in both models 2 and 3, the ML estimates of 𝜓𝑚 fail to be 

statically significant and the same occurs to abnormal volume when the regression is extended 

to also include sentiment. Interestingly though, in all models �̂�𝑏 turns out to be positive and 

statistically significant.19 

A further set of benchmarks, but of a two-state, regime switching type, are represented by models 

4 – 6 in Table 1. For instance, in the case of model (5), we have: 

𝑟𝑡+1
𝑠 = 𝛽𝑠,0 + 𝛽𝑠,𝑏𝑏𝑡 + 𝛾𝑠,𝑣𝑉𝑡

𝑥 + 𝜓𝑠,𝑚𝑠𝑟𝑡 + 𝜀𝑠,𝑡+1 

𝑟𝑡+1
𝐶 = 𝛽𝑐,0 + 𝛽𝑐,𝑏𝑏𝑡 + 𝛾𝑐,𝑣𝑉𝑡

𝑥 +𝜓𝑐,𝑚𝑠𝑟𝑡 + 𝜀𝑐,𝑡+1 

                                         𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) = ℓ(𝑞0)                                             (11) 

where 𝜀𝑠,𝑡+1 and 𝜀𝑐,𝑡+1 are the unexpected returns at t + 1 in the surviving and collapsing regime, 

respectively. Within each regime, these shocks are assumed to be independent and identically 

distributed under a normal distribution with zero mean but possibly regime-specific variance. In 

this case, the rational bubble may collapse with a constant probability that depends on 𝑞0. This 

means that even though 𝛽𝑏 < 0 implies that large relative bubbles depress expected returns and 

hence limit the extent of subsequent bubble dynamics, the very probability of the bubble fails to 

depend on the relative size of the bubble. In particular, model 4 corresponds to a version of 5 that 

fails to include the FFR in both regimes (i.e., 𝜓𝑠,𝑚 = 𝜓𝑐,𝑚 = 0). Model 6 is instead a restricted 

version of 5 characterised by the same regime-specific conditional mean functions but in which 

the standard errors of the shocks in the two regimes are restricted to be the same, i.e., such that 

the model is homoskedastic. 

 
19 Everywhere in this paper, standard errors (hence, the corresponding p-values) have been 
computed by inverting the final Hessian matrix and the numerical optimisation has been performed 
using the BFGS algorithm. 
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Table 1 shows that models 4 – 6 all mark a significant improvement over the simple regressions 

in 1 – 3 in terms of trading off a better fit to data vs. an increase in the number of estimated 

parameters, which grow from 4-6 in the case of the regressions 1 – 3 to 9-11 in the case of models 

4 – 6. In particular, model 5 shows that the relative size of the bubble has self-sustaining effects 

as �̂�𝑠,𝑏 = 6.47 and it is highly statistically significant in the bubble regime while FFR reduces stock 

returns in both regimes but this effect is statistically significant only in the collapse regime (i.e., 

�̂�𝑐,𝑚 = −0.97 is significant at a 5% size). As one may expect, the bubble regime is significantly 

more volatile than the collapse regime, with annualised volatilities of 13.1 and 8.3 percent, 

respectively, before accounting for the volatility-inducing effects of regimes, of course.20 

However, model 5 shows a constant probability of 0.222 of the system to be in a bubble state and 

hence a probability of 0.778 that the bubble may collapse on every month, assuming it existed to 

start from. The resulting durations are therefore modest (1.3 and 4.5 months, respectively) which 

make this model hard to refer to as a solid characterisation of stock market dynamics. Finally, 

model 6 loses considerable power to fit the data because of the homoskedasticity restriction: for 

instance, its H-Q criterion climbs up from 5.136 of model 5 to 5.165. Also because of this evidence, 

the remaining models in Table 1 all entertain regime-specific volatilities. 

Models 7 and 8 in Table 1 concern regime switching models in which the regime switching 

transition probabilities are time-varying and turn out to be function of the relative bubble size 

and of abnormal percentage volume. In fact, model 8 differs from 7 because it replaces abnormal 

volume in the latter with the sentiment index.21 Despite the fact that the number of parameters 

climbs up from 9 to 13, for instance when going from model 4 to 7 in Table 1, the H-Q criterion 

declines (from 5.136 to 5.130) which bears witness to the fact that the additional four parameters 

specified in the logistic function pinning down transition probabilities help the fit and fully 

compensate the expected cost in terms of parameter uncertainty. Of course, this improvement 

measured through an (admittedly) marginal decline in the information criterion shall need to be 

validated in terms of OOS forecasting accuracy and in terms of realised portfolio performance, 

which are comparative features to be measured in Section 6. For instance, model 7 implies an 

(indirect) self-exciting effects in the bubble regime because �̂�𝑠,𝑏 = 5.94 and is statistically 

significant, while �̂�𝑐,𝑏 = −0.05 and insignificant in the collapsing regime. However, because 

�̂�𝑞,𝑏𝑎𝑏𝑠 = 11.36 (with almost a zero p-value) but 𝛽𝑞,𝑏𝑠𝑞𝑟 = −22.58 (and highly statistically 

 
20 Crucially, these are estimates of the volatilities of regime-specific regression residuals, i.e., over and 
above the volatility of S&P returns that is captured by the predictor variables included on the right-
hand side of the conditional mean functions. 
21 However, while comparing the performance of the two models, we should keep in mind that the 
available time series for the sentiment index are much shorter vs. abnormal stock trading volumes. 
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significant), we have the typical situation in which relative bubbles are initially, locally self-

sustaining, as small bubbles increase the probability of their survival, but eventually as 𝑏𝑡 grows 

larger and larger, the square term will dominate and force the bubble to collapse, as 

ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡
2 + 𝛾𝑞,𝑣𝑎𝑏𝑠|𝑉𝑡

𝑥| + 𝛾𝑞,𝑣𝑠𝑞𝑟(𝑉𝑡
𝑥)2) → 0. Interestingly, the abnormal 

percentage volume never plays a dominant role, as both 𝛾𝑠,𝑣 and 𝛾𝑐,𝑣 are estimated to be small 

(with �̂�𝑠,𝑣 oddly negative) but fail to impact in any accurately measurable way the regime 

transition probabilities (i.e., 𝛾𝑞,𝑣𝑎𝑏𝑠 and 𝛾𝑞,𝑣𝑠𝑞𝑟 are small and never significant). Figure 3 Panel (a) 

(to be extensively commented later) also shows the filtered, real-time probabilities of the bear 

regime implied by the ML estimation of model 7. The model shows rather steady bubble 

probabilities that oscillate between 0 and 0.3 between 1955 and 1995, with a spike at 0.4 in 1974 

(which is sometimes recognised as the end of the ‘Nifty Fifty’ period). Starting in 1996, such 

probabilities climb up to a new range (0.2, 0.6) indicating a structurally higher real-time 

perceived probability of the US stock market being in a bubble, with spikes corresponding to the 

periods 2000-2001 (the alleged “dot com” bubble), 2007-2008 (the real estate, credit bubble), 

and as of recently the post-covid bubble in 2021-2022. 

 

4.2 Main Models Including the Federal Funds Rate 

We now move on to describe the main empirical results of our paper. Models 9 through 12 in 

Table 2 are all regime switching models in which the transition probabilities are time-varying 

and allowed to depend (within the logistic function specification ℓ(∙) in equation (7)) on the 

(absolute values and squares) of the relative bubble size, of abnormal percentage volume and of 

the short-term rate capturing monetary policy (denoted as m). While model 9 already marks a 

small improvement vs. model 7 in terms of its H-Q information criterion, with its 17 parameters 

the model happens to be insufficiently parsimonious. In fact, both �̂�𝑞,𝑣𝑎𝑏𝑠 and �̂�𝑞,𝑣𝑠𝑞𝑟 appear to 

have been imprecisely estimated. This explains why the best trade-off between in-sample fit and 

expected predictive performance is instead achieved by model 10, which features 15 parameters 

and essentially removes the two variables that depend on abnormal percentage volume from the 

specification of the logistic function ℓ(∙). Indeed, the H-Q criterion declines from 5.128 in the case 

of model 9 to 5.122 in the case of model 10. 

Model 10 represents the best specification achieved in this paper and proposes several features 

of interest. The relative bubble size variable 𝑏𝑡 keeps playing the expected role: �̂�𝑠,𝑏 = 5.43 and 

precisely estimated in the bubble regime, while �̂�𝑐,𝑏 = −0.36 not statistically significant, indicate 

that bubbles are indirectly self-sustaining when they are inflating and then—also because they 

become small and modestly volatile—they stop affecting returns upon collapsing. Most crucially 
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however, the comparison between model 10 and model 7 illustrates the distinctive role played 

by monetary policy in inflating rational bubbles and in causing their collapse. In model 10, a 

higher FFR deflates and contrasts bubbles through a direct channel, that emerges from the 

conditional mean estimates. Interestingly, this occurs both in the bubble (when 𝜓𝑠,𝑚 = −3.59 

with a p-value of 0.028) and in the collapsing (𝜓𝑐,𝑚 = −0.92 with a p-value of 0.043) regimes, 

even though a one-sided Wald test of the null of 𝜓𝑐,𝑚 > 𝜓𝑠,𝑚 rejects the null with a p-value of 

0.063, which is consistent with a restrictive monetary policy taming bubbles more aggressively 

when they are inflating vs. when they are already in a collapsing state. However, monetary policy 

also exercises a complex, non-linear effect—through its impact on the regime transition 

probabilities—on the probability of a bubble bursting and hence on its expected duration.22 The 

economic significance of the impact of the FFR on stock returns is of first-order: one standard 

deviation shock to increase the FFR (0.30% on a monthly basis, assuming FFR changes are 

completely unpredictable) decreases expected returns by 1.08% in the bubble regime and by 

0.28% in the collapse regime. Therefore, it is certainly not through a conditional mean return 

channel that progressive reductions in the short rate may have caused high realised mean stock 

returns and bubbles in our sample.23 In fact, in model 10, an expansionary policy that lowers the 

FFR would inflate a bubble through a direct channel, that emerges from the conditional mean 

estimates. Also in this case, monetary policy also has a non-linear effect that goes through the 

regime transition probabilities on the expected duration of a bubble. 

One recurring, specific property which makes the ex-post identification (interpretation) of the 

economic nature of the regime easier is that the bubble regime tends to carry an estimated, 

annualised volatility that is larger (in the case of model 10, almost 49% higher) than in the 

collapsing regime, even though the collapse may include drastic corrections in equity valuations 

that may increase ex-post realised variance. The intuition is that in the bubble regime, equity 

prices are not aligned with fundamentals and this creates unstable opportunities for speculative 

investing that tend to plausibly manifest themselves along with higher realised volatility. 

Yet, the most interesting effects of both relative bubbles and of the short-term rate occur with 

reference to their effects on the transition probabilities between the two regimes. For both 

features, we obtain that the coefficients associated to their absolute values (�̂�𝑞,𝑏𝑎𝑏𝑠 and �̂�𝑞,𝑚𝑎𝑏𝑠) 

are precisely estimated to be positive and large (the coefficients are 9.08 and 4.50, respectively); 

 
22 As in earlier commentary concerning model 7, 𝛾𝑠,𝑣 and 𝛾𝑐,𝑣 are estimated to be small (with 𝛾𝑠,𝑣 oddly 
negative). 
23 Little changes if the one standard deviation shock to the FFR is made conditional on the bubble 
collapsing regime of the S&P index, as these are identical and equal to approximately 0.30% per 
month. 
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the coefficients associated to their squares (�̂�𝑞,𝑏𝑠𝑞𝑟 and �̂�𝑞,𝑚𝑠𝑞𝑟) are precisely estimated to be 

negative and large (the coefficients are -19.37 and -2.22, respectively). Figure 2 displays the 

behaviour of the probability of a bubble to survive either as a function of the short-term rate (for 

a fixed relative bubble size) in Panel (a) and of the relative bubble size (for a given short-term 

rate) in Panel (b), respectively, and as a function of both the relative bubble size and of the short-

term rate in the three-dimensional plots at the bottom.24 In Panels (a) and (b) is visible that both 

𝑠𝑟𝑡 and 𝑏𝑡 produce a non-monotonic effect that is symmetric around a zero bubble in the case of 

𝑏𝑡, while it reaches its maximum for a FFR of approximately 1% per year and for relative bubbles 

sizes of slightly less than 30% in absolute values. However, because of the negatively signed 

quadratic terms appearing in the logistic probability function, the marginal effect of FFR makes 

𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) essentially zero so that a bubble is mechanically bursting for a FFR of 

approximately 3 percent per year and for relative bubbles sizes in excess of just less than 100%. 

Of course, while short-term policy rates exceeding 3 percent appear to be rather normal and easy 

to engineer, in the presence of easy monetary policy, a relative bubble size of 50-100% of the 

fundamental value appears to be rather massive in historical perspective. Panels (c) and (d) 

jointly visualise these features, showing that the probability of bubbles inflating mount and easily 

exceed 80% for interest rates in the range of 1-2 percent per year and relative bubbles size 

between 30 and 50%. 

Panel (d) of Figure 2 is of high significance because it stresses that however, when interest rates 

are in the 1-2 percent range, even in the absence of a current bubble, the probability of a bubble 

surviving exceeds 50% on every single month: easy FFR policies are consistent with the 

formation of bubbles even when these are initially absent. Nonetheless, Panel (c) reveals that for 

short-term rates higher than 3 percent, such a probability declines rapidly and this is the case 

especially when bubbles in the relative size range between 50 and 100% exist to start with. In 

fact, for short-term rates exceeding 3.5 percent per year, model 10 implies the bursting of all 

bubbles, irrespective of their initial size or existence. Although it is very different in its theoretical 

underpinnings (here, we formally start from the notion of rational, periodically collapsing 

bubbles) and especially in its empirical formulation (here, a regime switching heteroskedastic 

TVPr model), the estimates of model 10 are qualitatively consistent with the main findings of Galí 

and Gambetti (2014): there is a range of (relatively low) FFR rates for which bubbles are 

supported by the FFR being increased; yet, eventually, as the FFR is increased aggressively, it will 

end up taming the bubble itself. Yet, in our framework, such an effect does not occur through time 

 
24 The lower plot to the right (Panel (d)) is identical to the lower left (Panel (c)) plot but rotated to 
show the probability of a bubble surviving for low short-term rates, with emphasis on the range 0-2 
percent. 
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variation in the coefficients of an encompassing VAR model, but through the non-linearities of 

the dependence of the logistic transition probabilities from the FFR itself.25 

Figure 3 compares 1-year moving averages of real-time filtered probabilities of a bubble regime 

across alternative models using model 10 as a benchmark, given its superior in-sample fit 

penalised by a measure of model’s complexity, as captured by the Hannan-Quinn criterion 

(HQIC). In the plots, we display 12-month moving averages of filtered probabilities to capture in 

real-time a smooth measure of the evolving perception by an investor to be in a rational bubble 

regime. Panel (b) visualises the effects of making the bubble filtered probabilities a function of 

explanatory variables, such as the relative size of the bubble and the short-term rate by 

comparing the probabilities inferred from models 10 and 5, respectively. The dashed, red and 

larger font curve referring to model 5 illustrates the ability of a regime switching regression to 

capture the alternating perceptions of a bubble conditions to prevail and in particular are visible 

two features. First, while between 1955 and 1995 such probabilities had steadily oscillated 

between 0 and 0.3, between 1996 and 1997 a jump occurs and the moving average of the 

probabilities rises to 0.1-0.5 with occasional spikes in excess of 0.6. Second, model 5 delivers 

probabilities that spike and then decline in correspondence to the end of four major (alleged) 

bubble episodes (the Fall of 1987, the Summer of 2002, the Summer of 2008 and the Fall of 2022). 

Clearly, the bubble probabilities fail to be affected by the FFR, as this does not enter the logistic 

probability specification in model 5. Even in the perspective of Figure 3, model 10, by including 

the FFR in the logistic specification of the bubble probabilities, marks a meaningful improvement 

over model 5 in two ways: while before 1995 the likelihood of bubbles tends to be lower and 

(especially between 1977 and 1986) is very close to zero, the increase from the late 1990s is 

more remarkable; major, alleged bubble episodes (such as 1998-2001, 2007-2008 and 2010-

2015) are characterised by relative high moving averages of bubble regime probabilities, 

reaching level just short of 0.7 in correspondence to the real estate/sub-prime bubble. 

Table 2 provides evidence on the estimation results for two additional models, numbered 11 and 

12. Model 11 is identical to model 10 but adds the BW’s sentiment index to the conditional mean 

and logistic transition probabilities equations, thus featuring a rather large number of estimable 

parameters (21) using many less observations than models 7 or 10. This means that when we 

move from model 10 to 11, we go from a rather reassuring saturation ratio of 55 to 33 at best. 

We obtain that the sentiment index is hardly ever significant and—when one were to fix the 

sample of the estimation of models 11 and 10 to be comparable, i.e., limited to July 1965 – June 

 
25 As shown in Table 2, the conditional mean of S&P returns is always lowered  by higher values of the 
FFR. Note that the existence of a non-linearity in the formula for the logistic transition probabilities 
features a sort of non-linearity nested within some over-arching non-linearity. 
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2022—the corresponding HQIC climbs up from 5.164 to the 5.170 as shown in Table 2. As a 

result, more interest ought to be paid to model 12 which includes once more the BW’s sentiment 

index but only in the conditional mean function, where in the bubble state higher sentiment 

predicts lower S&P index returns (this is a standard finding, see, e.g., Baker et al., 2012). 

Interestingly, the inclusion of BW sentiment in both models 11 and 12 does not seem to replace 

or make abnormal volume insignificant in the switching regression specifications. Therefore, 

model 12 is characterised by a HQIC of 5.160 that slightly improves over the 5.164 scored by 

model 10 on the BW sentiment-constrained sample. 

Panel (d) of Figure 3 closes this Section by reporting in the same plot the 1-year moving average 

of the filtered probabilities of a bubble derived from model 10, the FFR and of the expected 

(predicted) S&P returns derived from the model (measured on the right scale). Visibly, expected 

returns tend to be positive and stable when bubble probabilities are low. On the contrary, when 

filtered bubble probabilities are persistently high to the point of raising the corresponding 1-year 

moving average, expected returns are more volatile and may therefore turn exceptionally low (as 

in the case of 2008-2009). Finally, given the prominent role of the squared value of the FFR 

(multiplied by a negative coefficient) in the logistic probability specification for model 10, in the 

plot low (high) FFR tends to occur along with rising and relatively high (low) probability of a 

bubble (with a correlation of -0.6), which is also consistent with Figure 2. 

To close this Section, it seems appropriate to formally assess the hypotheses that we have written 

down and specified earlier in the light of the ML estimates of models 10 and 12 presented in Table 

2. Clearly H0-1 can be rejected as 𝜓𝑠,𝑚(=  𝜓𝑐,𝑚) = 𝜓𝑞,𝑚𝑎𝑏𝑠 = 𝜓𝑞,𝑚𝑠𝑞𝑟 =  0 can be rejected using 

standard 5 percent sized tests, so that monetary policy yields an accurately measured impact on 

stock prices, both directly in the bubble regime and indirectly through the probability of a bubble 

surviving.26 These conclusions derive from both models 10 and 12 and appear robust to including 

sentiment as a predictor and/or to using a different (shorter) estimation sample. Furthermore, 

we are in a position to discriminate among the four additional sub-cases isolated with reference 

to HA-1. Clearly, in the case of both models, we obtain empirical evidence consistent with HA-1c: 

𝜓𝑠,𝑚 < 0, an expansionary monetary policy inflates bubbles directly; 𝜓𝑞,𝑚𝑎𝑏𝑠 > 0 but 𝜓𝑞,𝑚𝑠𝑞𝑟 <

0, which implies a concave relationship between 𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑉𝑡

𝑥|, (𝑉𝑡
𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) and the short 

rate, so that the short rate eventually (as it becomes large, say in absolute value to encompass the 

case of the shadow rate) increases the probability of a bubble to burst, ensuring global stability 

of the dynamic model. 

 
26 In model 12, including orthogonal sentiment as an explanatory variable but estimated on a shorter 
sample, 𝜓𝑐,𝑚 turns out to be imprecisely estimated but this coefficient was not included in the 

formal statement of H0-1.  
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4.3 Model Specification Tests 

Similarly to Brooks and Katsaris (2005a) and as it is typical of the applied econometrics 

literature, besides resorting to a sorting of the models based on the H-Q information criterion, we 

also proceed to apply likelihood ratio tests (henceforth, LRT) to assess whether restricted 

versions of our baseline (in particular, model 5) and key (in particular, model 10) models might 

be simplified and paired down to exclude either predictors and/or non-linear effects in the time-

varying transition probability function, yet preserving a not significantly worse fit to the data. 

In Table 3, starting from model 5 which is simply pasted from Table 2, we test a model in which 

the intercept 𝛽0 is restricted to be the same across regimes, thus indicating that the regimes can 

be distinguished through their different volatilities and predictability patterns but not because 

these carry a different, structural mean level. Under this simple restriction, the number of 

parameters declines from 11 to 10 and the maximised log-likelihood from -2107.796 to -

2112.089, and this decline by 4.293 log-likelihood points (that multiplied by two = 8.586) is 

highly statistically significant under a Chi-square distribution with one degree of freedom (from 

11-10 = 1), as the associated p-value is 0.003.27 This means that it is important, already in the 

baseline model with constant transition probabilities, that 𝛽𝑠,0 and 𝛽𝑐,0 be separately estimable. 

Moving towards the right in Table 3 (as one does, the Reader will note that the number of 

estimable parameters tends to decline as restrictions of growing strength are imposed), we test 

the so-called “fads” model by Cutler et al. (1991) in which returns are predictable, although mean 

returns do not differ across regimes, i.e., 𝛽𝑠,0 = 𝛽𝑐,0, 𝛽𝑠,𝑏 = 𝛽𝑐,𝑏, 𝜓𝑠,𝑚 = 𝜓𝑐,𝑚. Furthermore, the 

deviation of actual prices from the fundamentals has no predictive ability for the probability of 

being in the surviving regime, 𝛽𝑞,𝑏𝑎𝑏𝑠 = 𝛽𝑞,𝑏𝑠𝑞𝑟 = 𝜓𝑞,𝑚𝑎𝑏𝑠 = 𝜓𝑞,𝑚𝑠𝑞𝑟 = 0. The returns in the two 

regimes are characterised by different variances of residuals (𝜎𝑠 and 𝜎𝑐) but are the same the 

linear functions of bubble deviations. We find that twice the log-likelihood difference equals 

130.47 (= 2 x (-2107.796 + 2173.030)) which, under a Chi-square distribution with 5 degrees of 

freedom (as the number of parameters declines from 11 to 6 when one goes from model 5 to the 

fads version of the model), implies a rejection of the null of no difference in fit between the two 

models, with a p-value of 0.000 (similarly to Schaller and van Norden, 2002). As a final step, we 

also test model 5 against an even simpler two-state Gaussian mixture model specification in 

which there is no predictability from either monetary policy or the relative size of existing 

bubbles for stock returns and only the mean (𝛽𝑠,0 and 𝛽𝑐,0) and the variance intercepts (𝜎𝑠 and 

 
27 The Chi-square distribution for the (log-) likelihood ratio test holds only asymptotically or under 
the assumption of correct specification of the Gaussian shocks characterising the regime switching 
specification. In the former perspective, our sample of 829 observations turns out to be an important 
strength. 
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𝜎𝑐) are allowed to switch, but with constant, independent probabilities. Once more, we find that 

twice the log-likelihood difference equals 123.47 (= 2 x (-2107.796 + 2169.532)) which, under a 

Chi-square distribution with 6 degrees of freedom (as the number of parameters declines from 

11 to 5 when go from model 5 to mixture model), implies a rejection of the null of no difference 

in fit with a p-value of 0.000. All in all, Table 3 shows that both in terms of minimisation of the 

HQICs and when LRT-type tests are performed, a full model that includes both predictability and 

heteroskedastic regimes is needed by our S&P return data over the relevant sample. 

The rightmost portion of Table 3 performs similar model specification experiments with 

reference to our main model 10, which is also pasted for readability of the table. We start by 

testing the effects of removing abnormal percentage volume from the model in what we dub as 

model 10-no volume. In fact, this may be taken as a version of Schaller and van Norden (2002), 

augmented to include the effects of monetary policy as measured by the FFR. In this case, the LRT 

applied to restricting model 10 gives a test statistic of 111.62 ((= 2 x (-2094.307 + 2150.115)) 

which, under a Chi-square distribution with 2 degrees of freedom (as the restrictions concern 

𝛾𝑠,𝑣 = 𝛾𝑐,𝑣 = 0), implies a rejection of the null of no difference in fit with a p-value of 0.000. This 

establishes, that once it is removed from the conditional mean function, abnormal volume does 

play a role in our exercises.28 Similarly to what we have done above when transition probabilities 

are constant, in Table 3 we also test the restriction 𝛽𝑠,0 = 𝛽𝑐,0, which we reject with a p-value of 

0.017, and of 𝜎𝑠 = 𝜎𝑐 , which we reject with a p-value of 0.000. These further LRTs indicate that 

model 10 needs to be specified to include structurally different means and volatilities of returns 

even when there are no bubbles, no volume anomalies and in the absence of an active monetary 

policy. 

 

5 Robustness Checks 

In this Section, we experiment with a number of variations and extensions of the baseline 

switching regression framework covered in Section 4.2. The general feeling is that all such 

experiment will need to find that our key implications that the short-term rate has nonlinear 

effects on the size and duration of a bubble survive a number of additional tests and further 

specifications. Thus, confirming that monetary policy—for instance, through FFR changes—may 

locally (i.e., for very low rates) cause the inception of bubbles but globally (i.e., provided rates are 

 
28 In fact, models 9 and 10 as reported in Table 2 offer a chance to also test this restriction formally 
by computing the LRT based on deriving model 10 as a restriction (written as 𝛾𝑞,𝑣𝑎𝑏𝑠 = 𝛾𝑞,𝑣𝑠𝑞𝑟 = 0) 

of model 9. The resulting LRT statistic is 2.14 ((= 2 x (-2093.237 + 2094.307)) and implies a p-value 
of 0.343 that allows us not to reject the null hypothesis that there is no significant loss of fit from 
removing abnormal volume from the logistic function). 
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raised high enough) “prickle” them, causing their (partial, at least) collapse. In particular, Section 

5.1 shows that expanding the Taylor polynomial expansion to include a cubic term in the logistic 

transition probability function would not alter the performance of the switching regression 

model in terms of either fit or viability of its economic interpretation. In Section 5.2, we replace 

the FFR with Wu and co-authors’ notion of shadow rate to show that our main empirical insights 

remain intact. Section 5.3 shows that our definition of abnormal percentage volume does not play 

a first-order role as a driver of our main empirical findings. Likewise, Section 5.4 reports that 

using in our modelling exercises either an adjusted, orthogonalized version of BW sentiment 

index (as we have done in Section 4) or its un-adjusted raw equivalent, makes no difference to 

our main insights. Because our approach requires that bubbles be estimated as if these were 

easily measurable, in Section 5.5 we show that if the concept of bubble used in the rest of the 

paper were to be replaced by the methodology proposed by Campbell and Shiller (1987), our 

main results would go through intact and they would not be weakened. Finally, in Section 5.6, we 

check that our main results do not derive from our use of bubble estimates that occasionally turn 

negative. 

 

5.1 A Cubic Term in the Logistic Probability Specification 

Table 3 shows the results of the estimation of an extended switching model 10 (for simplicity, 

simply dubbed as 10’) in which the logistic transition probability of a bubble surviving (i.e., not 

collapsing) and the short rate contain a cubic term:29 

                              𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑏𝑡|

3, |𝑉𝑡
𝑥|, (𝑉𝑡

𝑥)2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡
2, |𝑠𝑟𝑡|

3)

= ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡
2 + 𝛽𝑞,𝑏𝑐𝑢𝑏𝑒|𝑏𝑡|

3

+ 𝛾𝑞,𝑣𝑎𝑏𝑠|𝑉𝑡
𝑥|+𝛾𝑞,𝑣𝑠𝑞𝑟(𝑉𝑡

𝑥)2 + 𝜓𝑞,𝑚𝑎𝑏𝑠|𝑠𝑟𝑡| + 𝜓𝑞,𝑚𝑠𝑞𝑟𝑠𝑟𝑡
2 +𝜓𝑞,𝑚𝑐𝑢𝑏𝑒|𝑠𝑟𝑡|

3),      (12) 

Even though model 10’ keeps performing better than the corresponding model 7’ that excludes 

monetary policy altogether (e.g., the HQ criterion declines from 5.134 to 5.129 when the short-

term rate is added), the majority of the coefficients in the logistic transition equation stop being 

significant in model 10’ compared to model 10. In particular, in contrast to model 10, none of the 

three 𝜓𝑞,𝑚 coefficients in ℓ(∙) are precisely estimated in 10’, an indication that our data can 

identify the coefficients of a high-order Taylor expansion applied to the logistic function only up 

 
29 We have also experimented with the inclusion of cubic terms in the (regime-specific) conditional 
mean equations and in particular in extending 10 to include also cubic terms for the abnormal volume 
but obtained an inferior in-sample fit and therefore worse (much larger) values of the HQIC. To 
provide a benchmark, Table 3 also reports on the outcomes of extending model 7 (that does not 
include the short-term rate) to include cubic terms, which we dub model 7’. 



29 

to an order of two and not higher.30 Moreover, Panel (a) of Figure 4 shows that a 12-month 

moving average of the bubble filtered probabilities derived from model 10’ follow the same 

general dynamics as those inferred from model 10 (as already reported in Figure 3), but they are 

spikier and more volatile (hence, they give stronger bubble indications) between the late 1960s 

and the early 1990s, they are essentially identical between the early 1990s and the GFC, but 

provide less incisive (but still, above the historical average) indications of the persistence of a 

bubble regime between 2009 and 2023. 

Panels (a) and (b) (representing the same 3-D plots but visualised from alternative perspectives) 

in Figure 5 emphasise that a model characterised by higher powers in the specification of ℓ(∙) 

would give rather murky economic insights: the probability of a bubble’s onset or persistence  

become a rather complex and non-linear function of 𝑏𝑡 and 𝑠𝑟𝑡 in which bubbles are made more 

likely by both very low rates (approximately below 1%) and by FFR levels in the range of 2-3%, 

while also bubbles with a rather large relative size (between 60 and 100%) are more likely to 

persist vs. either intermediate size (between 20 and 50 percent of the fundamental valuations) 

or massive (in excess of 110% in relative terms) bubbles. Even though it would remain the case 

that very large, extreme bubbles are likely to collapse and that a sufficiently high FFR (say, of 5 

percent and higher) is likely to prick bubbles irrespective of their initial size, the complexity of 

the model 10’ and its difficult interpretation lead us not to pursue higher-order Taylor expansions 

in the specification of ℓ(∙) in the core analysis of the paper. 

 

5.2 Replacing the Federal Funds Rate with the Shadow Rate 

Table 5 reports ML estimation results when the short-term rate capturing the US monetary policy 

is depicted by Wu’s shadow rate. Because the shadow rate time series is available only for a 1990-

2022 sample, as we have described in Section 3, we have pasted Wu’s data with a measure of the 

shadow rate that would have prevailed over the two additional, disjoint sub-samples 1954-1989 

and March 2022 – December 2023 on the basis of a simple linear projection of the shadow rate 

on the FFR based on 1990-2022 sample for which the two timeseries are simultaneously 

available. The general findings of Table 5 closely mimic the results reported with reference to 

Table 2. First, the models ruling out an impact by the short-term rate are obviously bound to 

provide empirical results that are identical to those in Table 2. For instance, they confirm that in 

spite of the richer parameterisations they imply, the regime switching regression models that 

take into account the alternating states induced by the periodically collapsing, but rational 

 
30 Interestingly, the coefficients in the conditional mean function of model 10’ are hardly impacted 
(vs. those in model 10) by adding cubic terms to the logistic specification of transition probabilities. 
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bubbles achieve lower HQ information criteria vs. simple, single-state regressions. Moreover, 

when in model 5 the shadow rate is added, the HQIC declines to 5.135, starting from 5.360 

achieved by model 2. Second, inserting the shadow rate in the logistic transition probability 

function, provides a further reduction in HQIC compared to when ℓ(∙) just depends on the relative 

bubble size and/or on the abnormal percentage volume, for instance to 5.125 in model 9 vs. 5.130 

in model 7. Third, the estimates of model 10 in Table 5 confirm a few key findings obtained in 

Section 4.2: in the conditional mean function, higher shadow rates reduce aggregate stock 

valuation in both regimes, but more strongly in a bubble regime; the absolute value of the shadow 

rate increases the probability of a bubble persisting (i.e., 𝜓𝑞,𝑚𝑎𝑏𝑠 > 0 and precisely estimated) 

but the square of the shadow rate reduces such a probability (i.e., 𝜓𝑞,𝑚𝑠𝑞𝑟 < 0), which configures 

a globally stable switching regression system. The global stability emerges with reference to the 

relative size of the bubble too, i.e., in a neighbourhood of zero (no bubble), bubbles self-sustain 

and their formation supports their further survival, but a threshold exists beyond which bubbles 

of increasing relative size cause the probability of collapse to rise towards one. Finally, also in the 

case of the shadow rate, using the orthogonalized BW’s sentiment indicator to replace abnormal 

volume or to supplement it (models 11 and 12), fails to improve the HQIC by much, also because 

abnormal volume variables in the logistic transition probability function do not turn up 

statistically significant. 

For instance, Panel (b) of Figure 4 compares the 12-month moving average of the filtered 

probabilities of a bubble occurring/persisting and inferred from model 10 vs. model 5, the latter 

including the shadow rate only in the conditional mean function and not within the logistic 

probabilities. The graph is qualitatively indistinguishable from Panel (b) in Figure 3, where the 

same comparison was performed but with reference to FFR used as a proxy of the short-term 

rate. Panel (c) of Figure 4 performs, in fact, a direct comparison between model 10 estimated 

using the FFR as in Section 4.2, and the version of model 10 that employs the shadow rate 

(integrated with its linear projected values): obviously, the resulting bubble probabilities are 

indistinguishable throughout with only two exceptions. A TVPr switching regression model 

informed by the shadow rate infers a (moving average) probability of a bubble that between 2002 

and 2003 reaches 60% thus exceeding the probabilities inferred when FFR data are used. On the 

opposite, between 2012 and 2015, the inferred bubble probabilities when the shadow rate is 

used are lower (sensibly so in 2014, with a difference that almost achieves 20%), which probably 

reflects the fact that already in 2014 the shadow rate starts climbing up from the very negative 

values achieved early in that year, thus signalling a less expansionary monetary policy.31 Finally, 

 
31 The minor differences in the probability moving averages detected in correspondence to 2022, 
when the shadow rate spikes up and changes sign becoming positive, have a similar interpretation. 
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the Panel (d) of Figure 4 is virtually indistinguishable from Panel (d) of Figure 3, when monetary 

policy was measured by the FFR, apart when the US shadow rate did turn negative, over the sub-

periods 2009-2015 and then 2020-2021. 

Panels (c) and (d) of Figure 5 show once more 3-D plots of how the probability of the system 

being in a persistent bubble would change when either the relative size of any initial, starting 

bubble or especially the shadow rate changes.32 These two panels are essentially identical to 

those displayed in Figure 2, apart from minor differences in the location of the shadow rate 

threshold beyond which the bubble probability increases, decreases, or reaches a peak. In fact, 

Panel (c) shows that for annualised values of 𝑠𝑟𝑡 exceeding approximately 3% (or below -3%), 

the probability to transition to a bubble are zero; the peak probability of a bubble is achieved for 

an annualised shadow rate of approximately 1% and in this case this probability is very close to 

1, quite irrespective of the initial value taken by the relative size of the bubble provided the latter 

remains in the customary range [-80%, +80%] which appears to be very similar to the [100%, 

+100%] reported in Figure 2, Panel (c). 

In conclusion, estimation results obtained by replacing the FFR with the Wu’s shadow rate appear 

to be generally very similar, both numerically and in terms of their possible interpretation, to 

make a full-blown exercise of analysis and interpretation similar to Section 4.2 rather pointless 

at this stage. Moreover, we need to remind ourselves that the values of the shadow rate employed 

in this Section are partially estimated from an auxiliary regression in charge of yielding fitted 

values for the shadow rate for periods for  which Wu and co-authors have refrained from its 

calculation because some data (concerning options on interest rate futures) are missing. 

Nonetheless, the analysis herewith performed allows to be comfortable with the idea that little 

or nothing of importance would change if we had adopted the shadow rate as our key measure 

of 𝑠𝑟𝑡 earlier. 

 

5.3 An Alternative Definition of Abnormal Trading Volume 

In Section 4 and Sections 5.1 and 5.2, we have worked with a notion of abnormal trading volume 

based on the measurement of the deviation of volumes from a trailing, 12-month moving average 

of past S&P index volumes. It is then natural to wonder, whether the selection of a 12-month 

 
32 To favor comparisons between Figures 2 and 5, the plots only encompass non-negative values of 
the shadow rate. Clearly, the shadow rate can turn negative and historically it has reached a minimum 
monthly value of -0.25%. However, because the shadow rate enters the logistic transition function in 
absolute value the resulting probabilities are perfectly symmetric around zero. Moreover, it remains 
the case that because the shadow rate can achieve negative values, it tends to span lower values than 
the FFR and to imply a lower sample mean. 
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average may affect our key findings in any detectable way. To this purpose, we adopt a shorter, 

6-month trailing notion of moving average on which to base our estimation of abnormal volume. 

Because our prior of abnormal volumes and BW’s sentiment indicator competing for a role in our 

empirical model had been dispelled by the results obtained from model 11 in Section 4.2, we 

apply this robustness check to model 11, obtaining a new model 11’, whose ML parameter 

estimates are reported in Table 4, where, for pure comparison, also the estimates of model 11, 

that have already appeared in Table 2, are copied. Visibly, replacing the definition of abnormal 

percentage volume based on a 1-year norm with a faster evolving one has little or no effects on 

the estimates of our switching regression framework, in the sense that all coefficients are 

identically signed, most of them fall within  one standard deviation of the point estimates that 

had been reported in Table 2 and more importantly all the considerations concerning the global 

stability of the dynamic model hold (i.e., that the estimates of 𝛽𝑞,𝑏𝑎𝑏𝑠 and 𝜓𝑞,𝑚𝑎𝑏𝑠 are positive, 

large and statistically significant while 𝛽𝑞,𝑏𝑠𝑞𝑟 and 𝜓𝑞,𝑚𝑠𝑞𝑟 are negative, large and also precisely 

estimated). Moreover, the effects of monetary policy on the size and chances of 

occurrence/persistence of bubbles are intact and also similar to models 10 and 10’. In particular, 

even though abnormal percentage volume and BW’s orthogonalized sentiment may be expected 

to be positively correlated, both variables play a role in identifying the conditional mean function, 

at least with reference to the bubble regime. However, like in the case of model 11, in 11’ the 

abnormal volume variable fails to play a role as a driver of the transition probabilities. We have 

also estimated a version of model 7 that includes the 6-month trailing moving average abnormal 

volume and obtained results essentially identical to those in Table 2.33 All in all, these essentially 

identical empirical estimates confirm that our definition of abnormal percentage volume does 

not play a first-order role and that our results shall be robust to its specification. 

 

5.4 Using a Raw Sentiment Indicator 

As previously discussed, so far, we have worked with a notion of BW sentiment indicator that is 

orthogonalized vs. a number of key macroeconomic aggregates, also to prevent sentiment to pick 

rational drivers behind the US stock prices. Nonetheless, because such an adjustment may appear 

arbitrary and subjective, in this Section we briefly assess the performance of model 11 (to be 

called 11’’ in what follows) when the original, unadjusted BW sentiment indicator is used to 

replace its (most commonly used) orthogonal version. Table 4 contains the ML estimation results 

for this case. The two rightmost columns of Table 4 show results for model 11’’, when we revert 

to use the definition of abnormal percentage volume based on a 12-month moving average 

 
33 This result is available upon request to the Authors. 
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benchmark but deploying the unadjusted sentiment index. Also in this case, a comparison with 

models 11 and 11’’ fails to reveal any remarkable differences. In fact, in the estimated logistic 

probability function now �̂�𝑞,𝑏𝑎𝑏𝑠 is smaller than in Section 4.2 and it fails to be statistically 

significant. The resulting HQIC is intermediate between those achieved by models 11 and 11’ but 

the changes induced by the shift to the unadjusted notion of sentiment are so minor that our 

results may well be considered robust to the details of this choice. 

 

5.5 An Alternative Measure of Bubbles 

A careful Reader may wonder about the specific role played by the method that we follow to 

isolate the relative size of the bubble, 𝑏𝑡, which is of course a crucial variable in our research 

design but that remains rather elusive to precisely measure. To test the robustness of our result 

to this crucial aspect of our research design, we follow the seminal work by Campbell and Shiller 

(1987) and its applications in Schaller and van Norden (2002) to estimate one alternative 

measure of 𝑏𝑡 and next use it in our empirical estimations. 

Campbell and Shiller take steps from the evidence and considerable likelihood of variation over 

time in expected dividend growth and develop a framework to capture the evidence about future 

dividend growth contained in the information set available to market participants. Given the 

simple present value model of stock market prices 

                                                           𝑃𝑡 = 𝐸𝑡 [∑
1

(1 + 𝑠𝑟)𝑗

∞

𝑗=0
𝐷𝑡+𝑗].                                              (13) 

Define the innovation in stock price as 𝜂𝑡 ≡ 𝑃𝑡 − 𝐸𝑡−1[𝑃𝑡]. The present value model implies that 

the innovation can be expressed in terms of observable variables as: 

                                                           𝜂𝑡 = 𝑃𝑡 − (1 + 𝑠𝑟)[𝑃𝑡−1 −𝐷𝑡−1].                                            (14) 

Because 𝑃𝑡−1𝑅𝑡 = (𝑃𝑡 − 𝑃𝑡−1 + 𝐷𝑡−1) = 𝜂𝑡 + 𝑠𝑟[𝑃𝑡−1 − 𝐷𝑡−1], this implies that 𝜂𝑡 = 𝑃𝑡−1[𝑅𝑡 −

𝑠𝑟] + 𝑠𝑟𝐷𝑡−1, which is the excess total return from investing in an asset with price 𝑃𝑡−1 and in 

which dividends are received at the beginning of the period and re-invested for a period at the 

risk-free short-term rate.  

If the present value model were true, then some linear function of the current price and the 

dividend would be the optimal linear forecast of future dividend changes. Intuitively, this is 

because the current price reflects all available information, so innovations (i.e., excess returns) 

are unpredictable. Campbell and Shiller (1987) define the "spread" (𝑆𝑡) as the difference between 

price and a multiple of current dividends: 

                                                                       𝑆𝑡 ≡ 𝑃𝑡 −
1 + 𝑠𝑟

𝑠𝑟
𝐷𝑡 .                                                              (15) 
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It is easy to show that 𝑆𝑡 is the optimal linear forecast of 𝑆𝑡
∗, where 𝑆𝑡

∗ is a weighted average of 

future dividend changes: 

                                                     𝑆𝑡
∗ =

1 + 𝑠𝑟

𝑠𝑟
[∑

1

(1 + 𝑠𝑟)𝑗

∞

𝑗=1
Δ𝐷𝑡+𝑗].                                                (16) 

A variety of studies, including Campbell and Shiller (1987), have found that excess returns are 

predictable using past information. They offer that such additional information contained in past 

dividend changes and stock market prices can be incorporated by estimating a VAR(p) 

representation for Δ𝐷𝑡  and 𝑆𝑡 (where both variables have been demeaned). As always, any 

VAR(p) can be re-written in companion form as a VAR(1): 

                     𝒛𝑡 ≡

[
 
 
 
 
 
 
 
Δ𝐷𝑡
Δ𝐷𝑡−1
⋮

Δ𝐷𝑡−𝑝+1
Δ𝑆𝑡
Δ𝑆𝑡−1
⋮

Δ𝑆𝑡−𝑝+1 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑎1 … 𝑎𝑝 𝑏1 … 𝑏𝑝
1 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑐1 … 𝑐𝑝 ⅆ1 … ⅆ𝑝
0 … 0 1 … 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … 0 0 … 1 ]

 
 
 
 
 
 

⏟                  
𝑨

[
 
 
 
 
 
 
 
Δ𝐷𝑡−1
Δ𝐷𝑡−2
⋮

Δ𝐷𝑡−𝑝
Δ𝑆𝑡−1
Δ𝑆𝑡−2
⋮

Δ𝑆𝑡−𝑝 ]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝑢1,𝑡
0
⋮
0
𝑢2,𝑡
0
⋮
0 ]
 
 
 
 
 
 
 

⏟  
𝒗𝑡

= 𝑨𝒛𝑡−1 + 𝒗𝑡 .      (17) 

In our context, the value of such a VAR representation is that it allows us to form an optimal 

forecast of future dividend changes, 

                                               𝑆𝑡+1
𝑓
≡ 𝐸𝑡[𝑆𝑡+1

∗ ] =
1

𝑠𝑟
𝒆1
′𝑨[𝑰2𝑝 −

1

1 + 𝑠𝑟
𝑨]

−𝟏

𝒛𝑡 ,                                   (18) 

where 𝒆1
′  is a row vector that picks out the forecast for Δ𝐷𝑡 . Through an algebraic manipulation, 

we can transform the expression for the spread into an expression for the fundamental price 𝑃𝑡, 

where the latter now incorporates the optimal linear forecast of future dividend changes based 

on past prices and dividends, 𝑆𝑡+1
𝑓

. Let: 

                                                                       𝑃𝑡 = 𝑆𝑡
𝑓
+
1 + 𝑠𝑟

𝑠𝑟
𝐷𝑡                                                                (19) 

Therefore, we can define a second measure of deviations from fundamentals, namely: 

                                                        𝑏𝑡 ≡
𝑃𝑡
𝑎 − 𝑃𝑡
𝑃𝑡
𝑎 =

𝑃𝑡
𝑎 − 𝑆𝑡

𝑓
−
1 + 𝑠𝑟
𝑠𝑟 𝐷𝑡

𝑃𝑡
𝑎 .                                             (20) 

Figure 1 shows (using the boldfaced, red dashed curve) the estimate of 𝑏𝑡 derived from equation 

(20). The pertinent comments have been already expressed in Section 3, also because the 

estimated relative size of the bubble obtained from equation (9) and (20) turn out to be highly 

correlated. 



35 

Table 6 presents our key empirical findings in the same format as in Tables 2-5. However, to 

favour comparisons with the models covered earlier, their numbering is preserved in Table 6, 

but the models’ numbers now are given a suffix 2nd, to indicate that these models are estimated 

taking 𝑏𝑡 to be measured with the alternative methodology illustrated above. The two columns 

to the left show that under the second method, the simple regression models fail to provide any 

explanatory power for aggregate stock returns, in the sense that the FFR fails to explain stock 

returns as much as the relative bubble size does. In fact, adding the FFR to the regression 1-2nd, 

somewhat increases the HQIC. The comparison between model 5-2nd and models 1-2nd-2-2nd 

emphasises the importance of adopting a switching regression approach (when going from 1-2nd 

to 5-2nd, the HQIC declines from 5.43 to 5.24) and of including FFR in the conditional mean 

function (when going from 4-2nd to 5-2nd, the HQIC declines from 5.2383 to 5.2277), where it 

negatively correlates with S&P returns in at least one regime. Moreover, a comparison of models 

5-2nd and 6-2nd shows that it is important to capture time variation in residual variances. 

The key result comes nonetheless from the comparison between model 10-2nd where both 𝑏𝑡 and 

𝑠𝑟𝑡 enter the logistic transition probability function and model 7-2nd that excludes monetary 

policy from affecting the duration of the bubble regime. The decline in the HQIC is substantial 

(from 5.25 to 5.22) when going from model 7-2nd  to model 10-2nd and the latter shows that FFR 

predicts lower S&P returns in both regimes, but in particular in the bubble regime. Even though 

the relative size of the bubble as part of the logistic function implies estimated coefficients 

carrying the same signs (𝛽𝑞,𝑏𝑎𝑏𝑠 > 0 and 𝛽𝑞,𝑏𝑠𝑞𝑟 < 0) as in model 10 in Table 2, now such 

coefficients are imprecisely estimated. Yet, the effects of the FFR on the behaviour of the time-

varying transition probabilities remains the one uncovered in model 10 and guarantees the 

global stability of the estimated model, as shown in Figure 6. In fact, Panel (a) in Figure 6 shows 

that regardless of the initial relative size of the bubble, for values of the FFR in excess of 

approximately 3% per year, bubbles have no chances to persist and they are expected to collapse. 

Moreover, Panel (b) emphasises once more that it is the FFR between 0.8 and 1.2 percent per 

year that maximise—in this case for a wide range of relative bubble levels between -200 and 

+200 percent, which is indeed unconditionally large in the light of the historical values of bubbles 

estimated using the second method—the probability of rational bubbles forming and persisting 

over time. Interestingly though, also in this case a Galí and Gambetti’s (2014) effect kicks in: it is 

indeed visible that for values of FFR that decline below 0.6 percent and towards zero, the 

probability of bubbles declines, similarly to panels (c) and (d) of Figure 2. 

Finally, Figure 7 shows 12-month moving averages of the filtered probabilities of a bubble under 

a variety of models when 𝑏𝑡 is derived using the second method. Panel (a) shows that under this 

novel methodology not only the wedge between the bubble regime probabilities of models 10-
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2nd and 5-2nd becomes massive and is due to the inclusion of monetary policy in the logistic 

function to estimate transition probabilities, but also that the probability of a bubble surges 

dramatically during the two QE episodes that have characterised recent history, i.e., 2009-2015, 

when the probabilities hovers around 0.75 and fails to decline much from the peak of 0.8 achieved 

during the sub-prime credit crisis of 2008, and 2020-2021, when the probability surges again to 

exceed 0.7 in the aftermath of the onset of QE policies to support markets in the midst of the 

pandemic shock. The role of monetary policy is well visible from the fact that under model 5-2nd 

the probability of a bubble stays rather low at a level between 0.20 and 0.25 which is only barely 

above the average probability of bubble conditions prevailing during the 1970s and 1980s. In 

fact, model 10-2nd is the implementation of model 10 that achieves the highest probability of a 

bubble prevailing over the entire 2009-2022 sample (as well as 2004-2005) as shown in Panel 

(b).34 Panel (c) plots as usual the fitted (expected) S&P returns as well as the 12-month moving 

average of bubble regime probabilities, where the negative correlation between the FFR and the 

spikes in the probability of a bubble becomes rather obvious. All in all, Table 6 and Figures 6 and 

7 provide support to our argument that our key insights are completely robust, in fact a portion 

of them might even come out strengthened, if we had adopted the approach by Campbell and 

Shiller (1987) to estimate the size and evolution of bubbles in the US stock market. 

 

5.6 Dealing with Negative Bubbles 

It is well known that rational bubbles cannot be negative: behaviourally, bubbles are rational in 

the sense that individuals do not mind paying a price over the fundamental price as long as the 

bubble element yields them the required rate of return the next period and is expected to persist. 

But if a bubble were negative, it would fall at a faster rate than the stock price. Hence a negative 

rational bubble ultimately ends in a zero price (say at time t + N). Rational agents realise this and 

they therefore know that the bubble will eventually burst. But by backward induction the bubble 

must burst immediately since no one will pay the 'bubble premium' in the earlier periods. 

Nonetheless, as shown in Figure 1, in Section 3 (as well as in 5.5) we have elected to use estimates 

of relative bubbles that can take negative values. 

In this Section, we have instead estimated model 10 (when the FFR is included as a predictor of 

both the conditional mean and of the regime transition probabilities) under the first method of 

bubble estimation in equation (9) when 𝑏𝑡 is restricted to be always non-negative. In essence, we 

 
34 Yet, model 10-2nd returns the lowest probabilities of a bubble prevailing between 1998 and 2001, 
which is sensible assuming that those years were characterised by the so called dot.com bubble but 
were well captured by the bubble measure inferred from the price-dividend ratio, which represents 
in essence our first method to estimate 𝑏𝑡. 
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simply adopt as a measure of relative bubbles  𝑏𝑡
+ ≡ min(0, 𝑏𝑡). We report model parameter 

estimates in the following (p-values are reported in the parentheses and boldfaced coefficients 

indicate statistical significance at 10 percent or less): 

  𝑟𝑡+1
𝑠 = −0.162

(0.804)
+𝟕. 𝟕𝟔𝟕

(0.001)
𝑏𝑡
+ − 𝟎. 𝟏𝟐𝟎

(0.000)
𝑉𝑡
𝑥 − 𝟒. 𝟗𝟑𝟏

(0.001)
𝑠𝑟𝑡 + 𝜀𝑠,𝑡+1     𝜎

𝑠 = 𝟑. 𝟕𝟕𝟗
(0.000)

  

𝑟𝑡+1
𝑐 = 𝟏. 𝟒𝟖𝟕

(0.000)
−0.388
(0.748)

𝑏𝑡
+ + 𝟎. 𝟎𝟔𝟖

(0.000)
𝑉𝑡
𝑥 − 𝟎. 𝟕𝟒𝟏

(0.089)
𝑠𝑟𝑡 + 𝜀𝑐,𝑡+1         𝜎

𝑐 = 𝟐. 𝟑𝟕𝟏
(0.000)

  

          𝑞(|𝑏𝑡|, 𝑏𝑡
2, |𝑠𝑟𝑡|, 𝑠𝑟𝑡

2) = ℓ (−0.345
(0.459)

+ 𝟖. 𝟔𝟖𝟏
(0.017)

|𝑏𝑡
+| − 𝟐𝟏. 𝟔𝟒𝟔

(0.006)
(𝑏𝑡
+)2 + 𝟒. 𝟖𝟓𝟓

(0.001)
|𝑠𝑟𝑡| − 𝟐. 𝟓𝟏𝟑

(0.011)
𝑠𝑟𝑡
2) 

Importantly, the signs and the general distribution of the levels of statistical significance across 

coefficients are identical to those obtained in Section 4.2 and reported in Table 2. For instance, in 

both models a large bubble increases expected stock returns in the surviving bubble regime (in 

fact, with a larger coefficient when 𝑏𝑡
+ replaces 𝑏𝑡) and it has a non-linear effect on the transition 

probability of a bubble regime, characterised by a significantly positive linear coefficient (8.68 

here vs. 9.08 in Table 2) but a negative and also precisely estimated quadratic coefficient (-21.65 

here vs. -19.37 in Table 2). Moreover, and crucially, under both 𝑏𝑡 and 𝑏𝑡
+, we find that the short-

term rate reduces expected stock returns in both regimes but yields a quadratic, concave 

parabolic effects on the bubble survival regime probabilities with significant coefficients of 4.86 

and -2.51 (these were 4.50 and -2.22 in Table 2). In conclusion, these empirical findings show 

that none of our earlier results were driven by the fact that we had allowed bubbles to take a 

negative sign in spite of their presumed rational nature. 

 

6 Out-Of-Sample Forecasting Performance: A Horse Race 

The regime switching models entertained in our paper are relatively naive because they 

essentially consist of state-dependent regressions. Nonetheless, the dependence of probability of 

transition from a state of a persisting bubble to a state of collapse as a function of pre-determined 

factors gives them a strong non-linear character. It is well known that extremely non-linear 

models may occasionally over-fit the in-sample data and—also because a “misguided” 

positioning in the classical bias-variance trade-off space (i.e., by allowing excessive variance in 

exchange for no bias and a more precise in-sample fit)—offer a poor out-of-sample (OOS) 

performance. Therefore, in this Section we analyse the recursive OOS performance of a few of the 

most representative models treated in Section 4. Of course, we include in our analysis models 1, 

5 and 10 that have marked the main logical steps of our analysis so far. Yet, it shall be instructive 

to include a few more models as well as a celebrated benchmark in the stock return predictability 

literature (see, e.g., Campbell and Thompson, 2008, and Welch and Goyal, 2008), the simple 
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historical average (HA) model, by which 𝑟𝑡+1|𝑡
𝑓

(0) = 𝑡−1∑ 𝑟𝜏
𝑡
𝜏=1 , where zero is the number 

assigned to the model HA.  

In the following, Section 6.1 describes the recursive OOS experiment performed, Section 6.2 

explains the economic and statistical performance measurements that we use to assess the 

predictive accuracy of our main models, results can be found in Section 6.3. Section 6.4 examines 

the empirical results of the economic value of our OOS exercise. 

 

6.1 The OOS Recursive Experiment 

We adopt a rather typical, recursive pseudo-OOS scheme. The “pseudo nature” of the experiment 

derives from the fact that we perform a horse race among the main models that have turned out 

to be able to provide a satisfactory trade-off between in-sample fit and parsimony (taken as an 

indicator of expected predictive performance) in Sections 4 and 5 using all the available data. 

Equivalently, because of obvious feasibility constraints, we refrain from doing afresh the model 

specification search along our selected OOS testing period to select the best models to be adopted 

and compared at each time iteration. Nonetheless, the experiment proceeds in a recursive fashion 

as an actual user of our regime switching predictive regressions would have done in real time. 

Starting with December 1999, at the end of every month we proceed to the estimation of versions 

of models 0, 1, 2, 5, 6, 7, 10 and 12 in which only values of the predictors (i.e., the relative size of 

the bubble, the FFR and the percentage abnormal volume) available as of that date are used to 

forecast the S&P returns of January 2000. The estimation is performed using all data available for 

the sample January 1955 – December 1999, for a total of 540 observations.35 We then compute 

predicted returns (𝑟𝑡+1|𝑡
𝑓

(𝑀)) for January 2000 according to model 𝑀 and any economic decisions 

to be implemented between December 1999 and January 2000 (e.g., portfolio selection), the 

ensuing realised performance according to some economic loss function (e.g., realised returns as 

of the end of January 2000) and the one-month ahead forecast errors (ⅇ𝑡+1|𝑡
𝑓 (𝑀) ≡ 𝑟𝑡+1 −

𝑟𝑡+1|𝑡
𝑓 (𝑀)). At this point, when a new vector of observations (also on the relative bubbles size, the 

FFR, and the percentage abnormal volume, besides 𝑟2000:01) become available on January 2000, 

we perform afresh the estimation for the sample January 1955 – January 2000, for a total of 541 

observations and compute predicted returns for February 2000 according to model 𝑀, economic 

decisions to be implemented between January and February 2000, the realised performance 

 
35 The December 1954 observation is lost because lagged variables are used both in the specification 
of the conditional mean and in the logistic probability functions. Note that with 540 observations, 
even the richly parameterised model 12 (with 17 parameters to be estimated) implies a saturation 
ratio of almost 32 which is not worrisome in terms of degrees of freedom. 
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according to an economic loss function and the one-month ahead forecast errors. We keep 

iterating on this recursive experiment until we exhaust the available data, which occurs in 

correspondence to November 2023, when we distil our last one-month ahead prediction.36 This 

gives a total of 288 testable predictions, forecast errors and realisations of any adopted economic 

loss function. Because of its features, such a pseudo, recursive OOS experiment has an expanding 

window nature in the sense that while new observations are added, older observations are never 

dropped. This favours a progressive increase of the saturation ratio along the experiment to 

reach, even in the case of the most richly parameterised models (which is 12), a ratio in excess of 

40, which ought to allow considerable precision in ML estimation.37 Interestingly, our OOS period 

fails to overlap with Brooks and Katsaris’ testing sample and also in that perspective gives a 

genuine out-of-sample assessment. 

 

6.2 Economic and Statistical Performance Measures 

Given that the recursive set up of the previous Section delivers T OOS prediction errors and 

realised values of some economic loss function, we briefly list the summary measures that we 

shall be using to compare alternative models and hence to set up an OOS horse race. As it is 

customary in this literature, our performance measures can be classified in two groups, those of 

purely statistical nature and those requiring an underlying logic of economic decision-making. 

The statistical loss functions we experiment with are the classical squared and absolute value 

losses. The former leads to the root mean squared forecast error (RMSFE) criterion, 

𝑅𝑀𝑆𝐹𝐸(𝑀,𝐻) = √𝑇𝐻
−1∑ [ⅇ𝑡+𝐻|𝑡

𝑓 (𝑀)]2
𝑇𝐻

𝜏=1
, 

where H ≥ 1is the forecast horizon of the exercise (in our case we focus only on the case of H = 1 

month but there would be no problem with examining the comparative model performances at a 

range of horizons) and 𝑇𝐻 is the number of OOS forecasts and associated errors derived from 

model M (in our application, 𝑇𝐻 = 288 even though we can compute 289 forecasts because the 

 
36 Forecasts and the resulting economic decisions can also be computed with reference to December 
2023, but at the time this paper was completed, our data set lacked information concerning January 
2024, preventing the OOS assessment of the prediction error and of realised economic performance. 
37 Because our model is linear and foresees regimes and non-linear dynamics, adopting some rolling 
window scheme is hardly attractive because it would either reduce the saturation ratio well below 
the value of 40 achieved at the end of the experiment (for instance a rolling scheme based on a 10-
year window would force us to single-digit saturation ratios) or ignore the adaptive learning of the 
nature of regimes that our models display, or both. 
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prediction for January 2024 cannot be assessed, as explained earlier). The absolute value loss 

leads instead to a mean absolute forecast error (MAFE) criterion: 

𝑀𝐴𝐹𝐸(𝑀,𝐻) = 𝑇𝐻
−1∑ |ⅇ𝑡+𝐻|𝑡

𝑓 (𝑀)|
𝑇𝐻

𝜏=1
. 

Another common measure of predictive accuracy popular in finance since Campbell and 

Thompson (2008) is the so-called OOS R-squared measure, which can be obtained as 

𝑅𝑂𝑂𝑆
2 (𝑀, 1) = 1 −

𝑉𝑎�̂�[ⅇ𝑡+1|𝑡
𝑓 (𝑀)]

𝑉𝑎�̂�[ⅇ𝑡+1|𝑡
𝑓 (𝐻𝐴)]

, 

where 𝑉𝑎�̂�[∙] is the sample variance over the recursive OOS period and the series of ⅇ𝑡+1|𝑡
𝑓 (𝐻𝐴) 

are defined as the one-month ahead forecast errors from the HA model, i.e., ⅇ𝑡+1|𝑡
𝑓 (𝐻𝐴) ≡ 𝑟𝑡+1 −

𝑡−1∑ 𝑟𝜏
𝑡
𝜏=1 . As it is well known in the predictability literature, a non-positive (positive) value for 

𝑅𝑂𝑂𝑆
2 (𝑀,𝐻) indicates that 𝑉𝑎�̂�[(ⅇ𝑡+1|𝑡

𝑓 (𝑀))] ≥  𝑉𝑎�̂�[(ⅇ𝑡+1|𝑡
𝑓 (𝐻𝐴))] (𝑉𝑎�̂�[(ⅇ𝑡+1|𝑡

𝑓 (𝑀))] <

 𝑉𝑎�̂�[(ⅇ𝑡+1|𝑡
𝑓 (𝐻𝐴))]), i.e., that a given model M cannot even (can) outperform the predictive power 

of a simple scheme that recursively estimates the sample mean of past stock returns. Yet, because 

𝑅𝑂𝑂𝑆
2 (𝑀,𝐻) is based on a ratio of sample variances, this measure is intimately related to the use 

of squared loss functions. 

Finally, we also summarise the forecasting accuracy of model M at horizon H through its mean 

percentage correct sign prediction statistic (the Success Rate, for short) computed as: 

𝑆𝑅(𝑀,𝐻) = 𝑇𝐻
−1∑ 𝐼(𝑟𝑡+𝐻, 𝑟𝑡+𝐻|𝑡

𝑓 (𝑀))
𝑇𝐻

𝜏=1
       𝐼 (𝑟𝑡+𝐻, 𝑟𝑡+𝐻|𝑡

𝑓 (𝑀)) = {
1 𝑖𝑓 𝑟𝑡+𝐻 ∙ 𝑟𝑡+𝐻|𝑡

𝑓 (𝑀) > 0

0 𝑖𝑓 𝑟𝑡+𝐻 ∙ 𝑟𝑡+𝐻|𝑡
𝑓 (𝑀) ≤ 0

. 

In other words, the indicator function picks up (taking a unit value) time t forecasts of time t + H 

returns that carry the same sign as the actual, realised returns. Therefore 𝑆𝑅(𝑀,𝐻) is  the 

percentage of time during the OOS testing period in which model M correctly forecasts the sign 

of returns. Of course, a minimal requirement is for any model M to express a 𝑆𝑅(𝑀,𝐻) > 0.5, 

which means that a model ought to outperform a simple coin flipping device when it comes to 

predict the sign of returns. 

We also compute and keep track of the realised performance obtained from the implementation 

of two alternative and yet simple portfolio strategies based on the idea of taking it seriously the 

S&P return forecasts computed under the same range of models and benchmarks alluded to 

earlier. The first strategy is a simple portfolio switching approach that follows Pesaran and 



41 

Timmermann (1995), in which the optimal weight to be allocated to the stock index at time t is 

determined as38 

𝑤𝑡(𝑀) = {
1 𝑖𝑓 𝑟𝑡+1|𝑡

𝑓 (𝑀) > 𝑠𝑟𝑡+1|𝑡

0 𝑖𝑓 𝑟𝑡+1|𝑡
𝑓 (𝑀) ≤ 𝑠𝑟𝑡+1|𝑡

, 

where 𝑤𝑡(𝑀) is the weight to be attributed to the S&P 500 index at time t under model M when 

the forecast is  𝑟𝑡+1|𝑡
𝑓 (𝑀) and 𝑟𝑡+1|𝑡

𝑓 (𝑀) > (≤) 𝑠𝑟𝑡+1|𝑡 indicates that the excess return is predicted 

to be positive (non-negative). Residually, 1 − 𝑤𝑡(𝑀) is the weight allocated to the risk-free asset, 

which in this case is identified with the 1-month T-bill rate, also because this is an investible 

asset.39 Note that 𝑠𝑟𝑡+1|𝑡 is the short-term riskless rate that applies between time t and t + 1 that 

is however already known at time t, when the portfolio weights are selected. The availability of a 

time series of S&P 500 return forecasts, 𝑟𝑡+1|𝑡
𝑓 (𝑀) (t ranges between December 1999 and 

November 2023) naturally delivers a time series of optimal switching weights 𝑤𝑡(𝑀) and hence 

of realised portfolio returns, 𝑤𝑡(𝑀)𝑟𝑡+1 + [1 − 𝑤𝑡(𝑀)]𝑠𝑟𝑡+1|𝑡 to span the interval January 2000 – 

December 2023. Because 𝑟𝑡+1|𝑡
𝑓 (𝑀) may differ from the realised aggregate stock return, it is 

possible that ex-post  𝑟𝑡+1 ≤ 𝑠𝑟𝑡+1|𝑡 (𝑟𝑡+1 > 𝑠𝑟𝑡+1|𝑡) even though ex-ante the investor, under 

model M may have predicted 𝑟𝑡+1|𝑡
𝑓 (𝑀) > 𝑠𝑟𝑡+1|𝑡 (𝑟𝑡+1|𝑡

𝑓 (𝑀) ≤ 𝑠𝑟𝑡+1|𝑡) thus making one 

inappropriate selection of the asset class. 

The second portfolio strategy implemented is of a classical, Markowitz’s mean-variance style in 

which 

                                                               𝑤𝑡(𝑀) =
𝑟𝑡+1|𝑡
𝑓 (𝑀) − 𝑠𝑟𝑡+1|𝑡

𝛾𝜎𝑡+1|𝑡
2 ,                                                         (21) 

where 𝜎𝑡+1|𝑡
2  is the variance of the (excess) returns predicted for time t + 1 as of time t and 𝛾 is a 

coefficient of risk averse of the investor we model. Consistently with earlier literature (see, e.g., 

Campbell and Thompson, 2008; Rapach et al., 2010) and for additional realism given the nature 

of the asset allocation problem, we truncate 𝑤𝑡(𝑀) to be in [0, 1], i.e., we do not allow short-sales 

of stocks and levered equity positions. Moreover, 𝜎𝑡+1|𝑡
2  is simply set to equal the variance of the 

recursive residuals from model 0 computed over our sample as it expands from January 2000 

until December 2023. Such simple, expanding window sample variance forecasts are applied 

 
38 The switching nature of the strategy should not be confused with regime switching characterisation 
of the collapsing bubble TVProb models estimated in Sections 4 and 5. 
39 In our sample the correlation between the FFR and the 1-month T-bill rate systematically exceeds 
0.98 in all regimes and hence it would be made little or no difference to our main results if we had 
used the FFR instead of the government bill rates. 
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uniformly across all models for two reasons. First, because the benchmarks adopted are classical 

but also homoskedastic, we would like to compare the performance across models in their 

predictive power for the mean of S&P 500 returns only. Therefore, we decide to neutralise the 

predictive power of a portion of the models even though many of these are heteroskedastic 

models that may forecast time-varying variances.40 Second, because it would be clearly possible 

to fine tune the conditional variance components of all models (benchmark included), by 

resorting to fairly complex predictive tools (such as regime switching GARCH, see, e.g., Marcucci, 

2005) but this would change somewhat the goals and meaning of our recursive prediction 

exercise. 

Also in this case, 1 − 𝑤𝑡(𝑀) is the weight allocated to the risk-free asset. The availability of a time 

series of S&P 500 return forecasts, 𝑟𝑡+1|𝑡
𝑓 (𝑀), naturally delivers a time series of optimal switching 

weights 𝑤𝑡(𝑀) and hence of realised portfolio returns, 𝑤𝑡(𝑀)𝑟𝑡+1 + [1 − 𝑤𝑡(𝑀)]𝑠𝑟𝑡+1|𝑡 to span 

the interval January 2000 – December 2023. Even though a direct comparison is impossible 

because the optimal mean-variance weight formula in (21) corresponds to an interior solution of 

a constrained optimisation problem (see, for instance, Cuthbertson and Nitzsche, 2005), it is 

sensible to add that a switching strategy represents a case, stark case of mean-variance that can 

be obtained as 𝛾 → 0 and an investor would only care for maximising expected portfolio returns. 

Equivalently, a switching strategy may describe optimal portfolio behaviour for near-risk neutral 

investors. 

Both strategies are applied both with and without imposing transaction costs. In the former case, 

the costs include both fixed and variable components according to the formula: 

𝐼{𝑤𝑡(𝑀) ≠ 𝑤𝑡−1(𝑀)}0.025 + 0.15|𝑤𝑡(𝑀) − 𝑤𝑡−1(𝑀)|      

where    𝐼{𝑤𝑡(𝑀) ≠ 𝑤𝑡−1(𝑀)} = {
1 𝑖𝑓 𝑤𝑡(𝑀) ≠ 𝑤𝑡−1(𝑀)

0 𝑖𝑓 𝑤𝑡(𝑀) = 𝑤𝑡−1(𝑀)
 

in which the fixed cost is 0.025 and applied in all periods in which there are trades affecting the 

portfolio weights irrespective of their size and the variable cost is 0.15 multiplied by the absolute 

value of the change in the portfolio weights. Both the structure and the entity of transaction costs 

are borrowed from earlier literature (see, e.g., Balduzzi and Lynch, 1999; Guidolin and Hyde, 

2012) and appear to be rather conservative in the age of many zero-transaction costs being 

popularised. Clearly, transaction costs are zero in the absence of traders while their maximum is 

0.175 when the portfolio switches abruptly from 0 to 100 percent invested in stocks or vice 

 
40 As a result, one may argue that the results that follow may be interpreted as a lower bound to the 
OOS predictive performance of the regime switching models with collapsing bubbles. 
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versa.41 Even though it may be of some interest to also consider the case of ex-ante transaction 

costs (when trades that change portfolio weights are avoided in case incurring transaction costs 

may fail to lead to a maximisation of the mean-variance objective), we shall leave this extension 

to future research. 

The realised OOS performances of these strategies (with and without application of ex-post 

transaction costs), are ranked and compared using a battery of standard performance measures: 

besides the mean realised strategy return and its standard deviation, we also report the 

corresponding Sharpe and Treynor ratios (the latter based on estimating a market model 

regression of the realised strategy returns on the excess returns on the S&P 500 index), their 

Jensen’s alpha (estimated from the same market model regression) and the strategy turnover 

index: 

𝑇𝑢𝑟𝑛𝑜𝑣ⅇ𝑟(𝑀) = 𝑇𝐻
−1∑ |𝑤𝜏+1(𝑀) − 𝑤𝜏(𝑀)|

𝑇𝐻

𝜏=1
. 

The turnover index is useful to report in case a Reader may have in mind levels or a composition 

(in terms of fixed vs. variable) of the transaction costs different from the one we have applied 

earlier. Of course, among all performance indicators, the Sharpe ratio carries a prominent 

meaning in the case of the mean-variance strategy which (as it is well known), can be re-cast as 

a problem of Sharpe ratio maximisation.42 

 

6.3 Empirical Results from Statistical Loss Functions 

Table 7 uses the statistical measures of predictive accuracy introduced earlier to document the 

relative, realised OOS forecasting performance of a range of regime switching models. The 

measures of predictive accuracy are computed in relative terms: in the top panel, the RMSFE and 

MAFE of models 1, 2, 5, 6, 7, 10 and 12 are reported as a ratio of the statistics obtained for model 

 
41 Given a standard, initial unit wealth, 0.175 may appear very large because we are studying the case 
of portfolio strategies concerning the S&P 500. However, empirically, in the case of the switching 
strategies, we observe that |𝑤𝑡(𝑀) − 𝑤𝑡−1(𝑀)| = 0 for the majority of the periods considered, while 
in the case of the mean-variance allocations, |𝑤𝑡(𝑀) − 𝑤𝑡−1(𝑀)| tends to be non-zero but rather small 
for most periods and practically all models. For instance, in the case of the benchmark model 0, the 
average transaction cost paid is 0.1% in the case of the switching strategy and 2.55% in the case of 
mean-variance; in the case of model 10, the average transaction cost paid is 2.13% in the case of the 
switching strategy and 3.39% in the case of mean-variance. Because these transaction costs are 
plausible but also rather large, they imply that in our exercise, excessive and frequent trading is 
steeply penalised. 
42 Even though it is natural to reward models that—for each or both of the strategies implemented—
deliver high mean returns, low volatility, positive large and significant Jensen’s alphas and maximum 
Treynor ratio, the meaning of these performance measures over and above the Sharpe ratio is more 
ambiguous and these performance measures are reported here simply because they are standard in 
the applied portfolio management literature. 
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0; in the bottom panel, the RMSFE and MAFE of models 0, 2, 5, 6, 7, 10 and 12 are reported as a 

ratio of the statistics obtained for model 1. Model 0 is the historical average of returns, while 

model 1 consists of a single-state regression model. The last two rows are instead reported for 

all models in terms of absolute statistical measures. For each indicator of statistical realised OOS 

performance, we have boldfaced the model that achieves the highest accuracy. 

The most striking finding in Table 7 is that all models, from the simplest, single-state regressions 

to complex TVProb switching models outperform model 0 both in terms of RMSFE, MAFE, success 

rate and 𝑅𝑂𝑂𝑆
2 . Given the widespread evidence that even a simple arithmetic mean benchmark is 

hard to outperform in recursive OOS backtesting (see, e.g., Welch and Goyal, 2008), such a result 

is rather interesting. In particular, model 7 which features regime switching, collapsing bubbles 

but gives no role to monetary policy, at a ratio of 0.946, it minimises the RMSFE vs. model 0 and 

leads to a higher 𝑅𝑂𝑂𝑆
2  (0.105 vs. zero, which holds by construction). Model 12, which also 

captures the impact of the FFR on the chances of bubbles to burst or persist, minimises at 0.927 

the ratio of its MAFE vs. the one of model 0 and maximises the distance with the success ratio of 

model 0 (67.9% vs. 62.2%). These results imply that, depending on the specific loss function, the 

gain from using models that take the existence of collapsing bubbles and even the impact of 

monetary policy into account ranges from a 5 to an 8 percent reduction vs. model 0 and in an 

almost 6% increase in the fraction of correctly predicted signs of one-month ahead returns. 

Table 7 also compares the performance of models 2, 5, 6, 7, 10 and 12 to model 1, which is a linear 

single-state regression which, nonetheless, takes bubbles and the FFR into account. Essentially, 

this portion of the table is about the OOS predictive power of models that incorporate regimes 

and the role of the FFR in modelling the TVProb. Also in this case, while model 7 outperforms 

under a square loss function by delivering a 2.5% reduction in RMSFE vs. model 1, model 12 does 

even better (with an improvement as large as 4.3%) under an absolute loss function. Moreover, 

the 𝑅𝑂𝑂𝑆
2 = 0.105 for model 7 almost doubles the 0.058 scored by model 1, while the success rate 

of 67.9% of model 12 grossly exceeds the 64.6% characterising model 1. 

One final comment concerns the fact that, even though the performance of model 10 which had 

become in many respects our reference model in Sections 4 and 5 as it did minimise the H-Q 

information criterion remains solid in Table 7, model 12 ends up yielding a superior predictive 

accuracy under the absolute value loss function that informs MAFE as well as a higher success 

ratio. Interestingly, model 12 is slightly worse than model 10 under a classical, squared loss 

function that informs a RMSFE-driven ranking. For instance, the ratio of MAFE of model 12 vs. 

the one of the historical mean is 0.927 vs. 0.94 for model 10, but the ratios of the RMSFEs are 

0.957 which slightly exceeds 0.955, for models 12 and 10, respectively. Yet, because a portion of 

the H-Q criterion is based on a sum of squared residuals minimisation, the existence of such 
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heterogeneity in the rankings of models under alternative loss functions appears to be 

unsurprising. All in all, we conclude that regime switching models that take into account the 

periodically collapsing nature of bubbles and—at least under some loss functions—the role 

played by monetary policy in affecting the probabilities of such a collapse provide not only a 

rather compelling fit to a long sample of S&P 500 return data but also display considerable 

predictive power when standard metrics are employed. This provides backing to the idea that 

our modelling efforts in Section 4 and 5 may have revealed important aspects of the data 

generating process. 

 

6.4 Empirical Results on Economic Value 

Table 8 shows performance results when no transaction costs are imputed. At a bird’s eye view 

of the best performances, which are boldfaced for each type of strategy/imputed risk aversion 

(in the case of mean-variance)/portfolio indicator, what is probably expected from the previous 

Section is that it is the arithmetic average (model 0) and models 7 and 10 that emerge as superior 

vs. all other models. Model 0 minimises realised portfolio volatility and turnover but fails to 

achieve high Sharpe and Treynor ratios, while models 7 and 10 show the highest realised mean 

returns and Sharpe ratios, also in dependence of the assumed coefficient 𝛾. 43 However, it is model 

10, when also changes in the FFR play a role in predicting regime switches and the probability of 

any bubbles collapsing, that maximises both the OOS realised Sharpe ratios and the Jensen’s 

alphas under mean-variance strategy implementations characterised by 𝛾 = 2 and 3 (reaching 

ratios in excess of 0.75 and significant alphas in excess of 0.40% per year). Model 7 outperforms 

instead for less risk averse strategies, i.e., when 𝛾 → 0 and a simple switching portfolio scheme 

prevails and when 𝛾 = 0.5; of course, under these conditions of no or modest aversion to risk, 

model 7 achieves higher Sharpe ratios (in excess of 1 in annualised terms), even though the 

implied Jensen’s alphas are in generally not precisely estimated. 

What was less expected of Table 8 is that the relatively more complex model 12 would stop 

delivering any attractive realised OOS portfolio performance. Even though model 12 is never very 

distant from model 10, for instance in terms of realised portfolio means, volatilities and hence 

Sharpe ratios, it is evident that its additional parameters that made for a more complex non-linear 

dynamic behaviour end up detracting from its realised performance. Although finding modest 

 
43 Notably, the switching portfolio strategy based on the recursive sample mean return delivers a 
constant, full 100% commitment to the S&P 500 over time, so that the realised performance of model 
0 is identical to that of the S&P index itself. The table also reveals that model 7 leads to the highest 
realised Treynor ratios for all strategies and assumed 𝛾, as its estimated exposure to market portfolios 
risks are systematically lower than under model 10. 
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differences in the rankings of realised OOS quality in dependence of the specific choice of loss 

functions is unsurprising, in our application it is remarkable that this occurs when we switch 

from the statistical loss functions in Section 6.3 to the economic value ones implemented here. 

Table 9 reports the empirical results on the same recursive portfolio results when transaction 

costs are imputed. Even though this occurs only on an ex-post basis, it is important to check on 

the effects of frictions because in Table 8 one can observe a massive difference between the 

realised OOS turnover of (say) models 7 and 10 vs. the benchmarks, models 0 and also 1. For 

instance, in the case of mean-variance strategies with 𝛾 = 2, model 10 yields a monthly average 

turnover of 2 percent vs. 0.1 percent in the case of model 0; in the case of the switching, mean-

oriented strategy, model 7 is characterised by a turnover of 16 percent vs. 0.3 percent in the case 

of model 0. Even though turnover indices of 2-16 percent appear to be rather modest (also as a 

result of the very simple asset allocation problem the investor solves), one wonders how realised 

performance may suffer when transaction costs are considered. Nonetheless, even though most 

performance indicators decline as a result of imposing transaction costs on an ex-post basis, 

Table 9 reports results that are qualitatively identical to those in Table 8. On the one hand, almost 

by construction, model 0 results are essentially unaltered because the benchmark historical 

sample mean implies little trading needs. On the other hand, even though their scores obviously 

worsen, it remains the case that model 10 outperforms when applied to the choices of a relatively 

risk-averse investor with high 𝛾, that model 7 instead prevails in the case of low or (limit) zero 𝛾, 

and that model 12 is similar but worse vs. model 10, even though the distance between the two 

now widens somewhat. For instance, for 𝛾 = 0.5, we find annualised Sharpe ratios of 1.05, 1.00 

and 0.34 for models 7, 10 and 0, respectively; these ratios are down vs. the values of 1.29, 1.17 

and 0.53 found for the same models in Table 8. This means that transaction costs impose a Sharpe 

ratio sacrifice that ranges between 0.17 and 0.24 in annualised terms, which appears large but 

not unreasonable. The Sharpe ratio of model 12 drops from 1.16 to 0.96 but remains inferior to 

that reported for model 10. 

The only arguable difference between Tables 8 and 9 is that in the latter, the transaction costs 

generally turn the estimated Jensen’s alpha into negative values, especially for model 0 and in 

general for mean-variance portfolio returns when 𝛾 = 3. However, models 10 and 12 are the only 

ones for which alphas remain positive when the transaction costs are considered even under 

transaction costs. The finding that models 10 and 12 may be resilient and provide appreciable 

performances when investors are assumed to be relatively averse to risk is intuitively consistent 

with the idea that also in OOS tests, more complex models that consider bubble risk may be of 

increasing usefulness to more risk-averse decision makers. Intuitively, the latter will care more 

for the risk posed by bubbles suddenly collapsing. 
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Figures 8-11 provide visual documentation to the findings in Tables 8 and 9 and allow us to grasp 

the underlying optimal portfolio choices in a more practical way. All these plots concern the case 

in which transaction costs are considered but the corresponding figures before transaction costs 

are imputed appear to be qualitatively the same44. Table 8 shows the wildly different optimal 

weights across alternative models and especially according to the choice of the type of strategy, 

i.e., as a function of whether 𝛾 is positive or not.45 In particular, it is evident how model 0 implies 

no variability of optimal weights and almost zero turnover in the case of the mean-variance 

strategy, and a constant 100% commitment to the S&P 500 index. Even assuming 𝛾 → 0, it is also 

clear that model 7 implies some more portfolio switching vs. model 10 and this may justify why 

by being more active, the former portfolio overperforms the latter in Table 9. Visibly, the changes 

in mean-variance portfolio weights across models 7 and 10 are similar, but—probably because 

of the inclusions of the signals coming from the FFR for the bubble regime probabilities—the 

latter shows sharper variations that end up improving its performance, as shown in Table 9. For 

instance, after the burst of the (alleged) bubbles in early 2000, early 2009, and early 2020 (with 

the Covid pandemic crisis), under model 10 the weight allocated to the S&P index shoots up to 

75, just less than 80 and 50 percent, respectively, while these upticks are 30, 45 and 35 percent 

only, respectively under model 7. The performance of the US stock market in mid-2000, mid-

2009 and mid 2020 all validate that such a strong, bullish reaction would have brought 

considerable luck.46 

Figures 9-11 need instead to be compared across different models. In general, when the different 

scales of the returns plotted are considered, the returns derived from the switching strategies 

appear to be considerably more volatile than those obtained under mean-variance, which is to be 

expected given that the former case corresponds to 𝛾 → 0 and the investor will trade more 

aggressively and apply no risk-exposure reduction. Interestingly, the plots of realised portfolio 

returns in Figures 10 and 11 are similar, but these are less spiky in the latter case, when model 

10 is used. Finally, as one would expect, in all these figures, the expanding window monthly 

Sharpe ratio computed on the portfolio realised performances is higher under the switching 

strategy vs. the mean-variance case, but the difference shrinks as we go from the clearly miss-

 
44 All plots of results obtained assuming no transaction cost are available upon request to the Authors. 
45 To improve visibility, Figure 8 plots the case of 𝛾 = 0.5 even though Figure 9-11 present the case of 
𝛾 = 2. 
46 Similarly, at the peak of the (alleged) bubbles in late 2000 and mid-2008, under model 10 the weight 
allocated to the S&P index is flattened to zero where it remains for a few months at least, while such 
declines are slower to occur and quantitatively more timid under model 7. The performance of the US 
stock market in 2001 and late 2008 also validate that a strong, bearish reaction would have generated 
non-negative excess returns (the excess returns are prevented from being positive because we do not 
allow short sales). 
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specified benchmark model 0 to model 7 and then 10, which is a sign of how easy it is to extract 

economic value from the latter irrespective of the specific assumptions one makes on the 

preferences of the investor. 

 

7 Discussion and Conclusions 

In this paper, we have used a wide array of monthly data sources to measure equity 

fundamentals, the stance of monetary policy and a number of alternative methods to measure the 

(relative, to fundamentals) size of bubbles to test how and whether the policies implemented by 

the Federal Reserve over a long (1954-2023) sample may have impacted aggregate rational, stock 

price bubbles. We find that this may have occurred in two ways: deflating their size by depressing 

expected returns when bubbles are inflating, according to a standard mechanism through which 

higher (risk-free) discount rates and the resulting weaker real economic outlook would slow 

down the rate of increase of stock prices; potentially impacting their probability of collapse 

(hence, their expected duration), according to the mechanism already illustrated in a rather 

different empirical set up by Galí and Gambetti (2014). 

Our main empirical finding is that indeed monetary policy has strongly, historically affected the 

relative size and duration of equity bubbles in the US. We propose an estimate by standard 

maximum likelihood methods, Gaussian regime switching regression models in which transition 

probabilities are time-varying and affected by a variety of factors (likewise expected stock 

returns), including measures of the stance of the Fed monetary policy (measured by either the 

Federal Funds rate or by Wu and Xia’s shadow rate) but also extended to include the initial, 

relative size of the bubble, abnormal percentage trading volume and a classical proxy for market 

sentiment due to Baker and Wurgler. The empirical model is obtained by log-linearization of 

standard asset pricing identities and picks up the mechanism of periodically collapsing, rational 

bubbles first introduced in the seminal paper by Schaller and van Norden (2002). Our empirical 

estimates show that, on the one hand, a higher short-term policy rate reduces expected stock 

returns and hence the size of any ongoing bubble irrespective of the regime in which the markets 

may start from on a given month. On the other hand, the effect of a higher short-term rate on the 

transition probabilities of the system is complex and non-linear because the data show a strong 

appetite for higher-order terms (powers) in the specification of the logistic transition probability 

function. In fact, locally, in correspondence to a zero-rate approximation point, the linear impact 

of the rate on the logistic probabilities is positive and large and this implies that a lower rate does 

reduce the chances of a bubble collapsing, thus increasing its duration, so that very low rates do 

indeed foster the formation and the growth of bubbles. Yet, as the short-terms rates grow higher, 
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the quadratic term in the logistic function is estimated to be negative and large and this leads to 

bubbles to burst, which means that sufficiently high rates steer bubbles to collapse. Because a 

similar, nonlinear dynamics also characterises the impact of the initial, relative size of bubbles on 

their duration, the system is globally stable and features a sequence of bubbles forming and 

collapsing over time, everything in a completely rational way and in the absence of first-order 

arbitrage opportunities. 

These results are robust to a range of robustness checks. In particular, expanding the Taylor 

polynomial expansion in the logistic transition probability function to include a cubic effect of 

short-term rates and relative bubbles does not alter the performance of the switching regression 

model in terms of either fit or viability of its economic interpretation. When we replace the FFR 

with the shadow rate, our main empirical insights remain intact. Our definition of abnormal 

percentage volume does not play a first-order role as a driver of our main empirical findings. 

Likewise, adopting in our exercises the un-adjusted version of BW sentiment index makes no 

difference to our main insights. Finally, when the measurement of bubbles is replaced by the 

methodology proposed by Campbell and Shiller (1987), our main results go through intact. 

When the best fitting models that have emerged in Sections 4 and 5 are applied in a rather 

classical, recursive OOS exercise, we find that—irrespective of the loss function assumed and 

whether this had a statistical or economic nature—the regime switching models that consider 

the existence of periodically collapsing bubbles always outperform a number of benchmarks, 

such as the recursive sample mean of S&P 500 returns and simple and single-state regressions 

that feature bubble indicators. Yet, the specific loss function adopted turns out to be of more 

relevance to discriminate between models that account for the impact of monetary policy on 

regime switching, in the sense that the latter type of model performs the best only when absolute 

value loss or Sharpe ratio maximisation within a mean-variance framework are assumed. 

Of course, many extensions of our framework can be envisioned. Among others, firstly, it would 

be interesting to pursue alternative measures of the relative size of bubbles stemming from either 

the application of different methodologies, from the use of alternative notions of fundamentals 

diverse from dividends (e.g., earnings, that are equally available in Bob Shiller’s data), or both. 

Secondly, in this paper we have rather simplistically identified the stance of monetary policy with 

the levels and with the short-term rates that are directly controlled by the Federal Reserve or 

that have been estimated and re-constructed from the price of assets (e.g., interest rate futures 

options) that reflect market expectations of future actions of the central bank. However, a 

voluminous literature exists that has identified the changes in monetary policy with the 

unanticipated variations (shocks) in such rates. All these extensions and research avenues 

represent exciting directions of research and development. Thirdly, a genuine out-of-sample 
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validation of the nonlinear dynamics uncovered in this paper would be very important, not only 

by using post-2023 data that have not been employed in the analysis so far, but also with 

reference to other central bank authorities and markets different from the US and the Federal 

Reserve system (e.g., the ones from the Eurozone and the UK). 
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Table 1: Summary Statistics for Asset Returns and Predictor Variables of the Dataset  

The table presents summary statistics for monthly returns on the S&P stock index, the associated abnormal trading volume, 1-month T-bills, the 

short-term (shadow) rate implied by interest rate options, the effective Fed funds rate, the price-dividend ratio for the S&P and the BW’s sentiment 

index. The sample is June 1954 - December 2023. The shadow Federal funds (monetary policy) rate is extrapolated by a simple regression of the 

shadow rates estimated and made available by Cynthia Wu on the observed Fed fund rate with reference to a January 1990 – February 2022 sample 

(for which Wu’s shadow rate is available). The sentiment index is Baker and Wurgler’s (2006, 2007) measure available from Jeff Wurgler’s personal 

web page. 

 

 

 

  

Index Returns Abnormal Volume 1-m T-bill Rate Shadow Rate Shadow Rate (fitted) Fed Fund Rate Price/Div. Ratio BW Sentiment BW Sentiment (orthog.)

 Mean 0.920 3.797 0.340 0.192 0.358 0.384 33.953 0.0003 -0.0002

 Median 1.220 1.600 0.330 0.175 0.339 0.348 29.850 -0.100 -0.005

 Maximum 12.320 112.300 1.350 0.678 1.529 1.592 51.050 3.040 3.210
 Minimum -20.190 -36.860 0.000 -0.249 -0.249 0.004 18.650 -2.360 -2.490

 Std. Dev. 3.519 17.129 0.255 0.231 0.308 0.299 8.813 1.000 1.000

 Skewness -0.904 1.033 0.850 0.001 0.712 1.064 0.563 0.418 0.157
 Kurtosis 6.626 5.883 4.049 1.890 4.127 4.581 1.700 3.587 3.873

 Jarque-Bera 571.250 437.577 138.780 19.814 114.647 244.060 102.928 29.761 24.525

 Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 Observations 835 835 835 386 834 834 835 684 684
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Table 2: Main Results for Models in which Monetary Policy is Proxied by the Federal Funds Rate 

The table presents the ML estimates of a range of regime switching models in which a selection of variables—including and excluding the FFR—

are driving the probabilities of a regime shift from and to a bubble state. For most models, the sample is December 1954 - December 2023. When 

Baker and Wurgler's orthogonalized sentiment index is employed, the sample is instead July 1965 - June 2022. P-values are reported in the 

parentheses. 

  

(1) (2) (3)
Regime Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse

0.699 0.776 0.582 -1.146 1.227 -0.640 1.639 -0.836 1.579 -1.615 1.245 -0.679 1.508 -0.082 1.562 0.023 1.554 0.107 1.560 0.082 1.481
(0.000) (0.001) (0.035) (0.013) (0.000) (0.325) (0.000) (0.278) (0.000) (0.008) (0.000) (0.206) (0.000) (0.895) (0.000) (0.967) (0.000) (0.802) (0.000) (0.838) (0.000)

1.476 1.373 1.842 6.801 -0.127 6.474 -0.646 4.730 0.045 5.938 -0.049 2.607 -0.061 5.495 -0.360 5.432 -0.362 6.448 -0.228 7.031 -0.142
(0.004) (0.017) (0.005) (0.000) (0.806) (0.000) (0.250) (0.001) (0.937) (0.000) (0.925) (0.045) (0.941) (0.000) (0.571) (0.000) (0.578) (0.000) (0.746) (0.000) (0.853)

0.014 0.014 0.009 -0.114 0.065 -0.117 0.066 -0.127 0.060 -0.107 0.061 -0.123 0.068 -0.122 0.068 -0.121 0.076 -0.117 0.078
(0.037) (0.036) (0.231) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-0.182 0.217 -1.491 -0.971 -3.526 -0.844 -3.566 -0.949 -3.589 -0.918 -4.135 -1.016 -4.046 -0.948
(0.690) (0.665) (0.289) (0.012) (0.003) (0.049) (0.041) (0.033) (0.028) (0.043) (0.001) (0.078) (0.004) (0.111)

-0.358 -0.566 -0.053 -0.941 0.059 -1.071 -0.018
(0.019) (0.099) (0.773) (0.008) (0.695) (0.006) (0.906)

3.504 3.506 3.580 3.820 2.407 3.778 2.404 4.011 2.452 5.128 2.334 3.640 2.422 3.579 2.405 3.154 2.458 3.168 2.463
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Probability Parameters:

Observations 829 829 684
Number of parameters 4 5 6

Log likelihood -2214.389 -2214.309 -1840.481
Hannan-Quinn criterion 5.356 5.361 5.409

9 11 10 13 13 17 15 21 17

Dependent variable: Returns

Linear Single State Switching Regressions
Time-Varying Probability Switching Regressions

without Fed Fund Rate with Fed Fund Rate

(10) (11) (12)

Intercept

Bubble Size

Abnormal % Volume

(4) (5) (6) (7) (8) (9)

0.928 0.755 -0.265 -0.497 -1.511 -1.407

Fed Fund Rate

Sentiment Index

Volatility
2.685

(0.000)

Intercept
-1.213 -1.258 1.632
(0.000)

abs(Abnormal % Volume)
-0.008 0.001

(0.115) (0.031)

abs(Bubble Size)
11.357 15.273 9.230 9.083 7.393 7.872
(0.004)

(0.000) (0.000) (0.091) (0.346) (0.713) (0.341)

0.022
(0.756) (0.975) (0.564)

(0.030) (0.016) (0.016) (0.083) (0.052)

6.808
(0.004) (0.003) (0.000) (0.000)

abs(Fed Fund Rate)
4.312 4.498 7.587

(0.266) (0.538)
abs(Sentiment Index)

-1.055 0.503

-16.992
(0.001) (0.022) (0.002) (0.002) (0.019) (0.011)

Bubble Size^2
-22.581 -33.495 -19.582 -19.373 -16.256

(0.639) (0.612) (0.374)
Abnormal % Volume^2

-1.410E-04 -1.780E-04 -4.840E-04

-3.204
(0.046) (0.039) (0.001) (0.007)

Fed Fund Rate^2
-2.182 -2.223 -3.821

(0.827) (0.173)
Sentiment Index^2

0.086 -0.398

829 684 684829 829 829 829 684 829

5.136 5.136 5.165 5.130 5.279 5.128 5.122 5.170 5.160
-2111.586 -2107.796 -2121.674 -2101.738 -1780.956 -2093.237 -2094.307 -1728.673 -1732.906
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Table 3: Restricted Models Used in Likelihood Ratio-Based Specification Tests 

The table presents the ML estimates of a range of regime switching models in which a selection of variables—including and excluding the FFR—

are controlling the probabilities of a regime shift from and to a bubble state. For all models the sample is December 1954 - December 2023. P-

values are reported in the parentheses. 

 

Regime Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse

-0.640 1.639 -1.263 1.342 0.023 1.554 -1.450 1.709 0.127 1.518
(0.325) (0.000) (0.108) (0.000) (0.967) (0.000) (0.057) (0.000) (0.771) (0.000)

6.474 -0.646 4.648 -0.159 5.432 -0.362 2.121 0.445 3.816 0.249 3.985 0.094

(0.000) (0.250) (0.004) (0.777) (0.000) (0.578) (0.031) (0.657) (0.020) (0.682) (0.002) (0.873)

-0.117 0.066 -0.139 0.067 -0.122 0.068 -0.127 0.071 -0.131 0.066

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-1.491 -0.971 -4.580 -0.510 -3.589 -0.918 2.526 -0.811 -5.249 -0.285 -5.543 -0.907

(0.289) (0.012) (0.000) (0.202) (0.028) (0.043) (0.043) (0.105) (0.001) (0.509) (0.000) (0.059)

3.778 2.404 3.875 2.434 6.649 2.672 5.915 2.596 3.579 2.405 4.773 2.301 3.697 2.389
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Probability Parameters:

Observations

Number of parameters
Log likelihood

Hannan-Quinn criterion 5.136 5.141 5.270 5.122

11 10 6
-2097.131-2107.796 -2112.089 -2173.030 -2094.307 -2150.115

5.247 5.124

15

(0.015)
Fed Fund Rate^2

-2.223 2.804 -2.669
(0.039) (0.121)

Dependent variable: Returns

Switching Regressions Time-Varying Probability Switching Regressions

(5) (5 - one intercept) (5 - fads model) (5 - mixture model) (10) (10 - no volume) (10 - one intercept) (10 - homoskedastic)

(0.000)

Bubble Size
1.076

(0.056)

Abnormal % Volume

Fed Fund Rate
-0.308
(0.460)

Intercept
1.292 1.125 1.131

(0.000)(0.000)

0.983
(0.000)

Intercept
-1.258 -1.343 -1.813 -1.604 -0.497 -0.239 -0.670 -0.919

(0.000) (0.075)(0.341) (0.717)

Volatility

(0.227)(0.000) (0.000) (0.000)

abs(Bubble Size)
9.083 33.078 8.831 11.435

(0.004)

abs(Abnormal % 
Volume)

(0.016) (0.000) (0.024)

6.102

(0.000)

Bubble Size^2
-19.373 -85.046 -19.141 -22.012

(0.001)

Abnormal % Volume^2

(0.001)
4.498 -4.049 5.240

(0.003) (0.047)

(0.002)

abs(Fed Fund Rate)

(0.002) (0.001)

-3.272
(0.002)

829 829 829 829 829 829 829 829

14
-2169.532 -2104.036

5.257 5.140

13 145
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Table 4: Robustness Checks Concerning Cubic Terms, Alternative Measures of 

Volume and of Sentiment 

The table presents the ML estimates of a range of regime switching models in which a 

selection of variables—including and excluding the FFR—drive the probabilities of a regime 

shift from and to a bubble state. For most models, the sample is December 1954 - December 

2023. When Baker and Wurgler's orthogonalized sentiment index is employed, the sample is 

instead July 1965 - June 2022. P-values are reported in the parentheses. 

  

Regime Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse

-1.615 1.245 -1.670 1.252 0.023 1.554 0.032 1.561 0.107 1.560 -0.170 1.817 0.077 1.537

(0.008) (0.000) (0.007) (0.000) (0.967) (0.000) (0.954) (0.000) (0.802) (0.000) (0.704) (0.000) (0.856) (0.000)

5.938 -0.049 5.925 -0.048 5.432 -0.362 5.273 -0.374 6.448 -0.228 6.963 -0.426 6.605 -0.174

(0.000) (0.925) (0.000) (0.927) (0.000) (0.578) (0.001) (0.572) (0.000) (0.746) (0.000) (0.560) (0.000) (0.804)

-0.107 0.061 -0.107 0.060 -0.122 0.068 -0.122 0.068 -0.121 0.076 -0.123 0.076

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-0.138 0.080

(0.000) (0.000)

-3.589 -0.918 -3.653 -0.913 -4.135 -1.016 -3.735 -1.067 -3.871 -0.993

(0.028) (0.043) (0.027) (0.071) (0.001) (0.078) (0.004) (0.055) (0.003) (0.087)

-0.941 0.059 -0.901 0.079

(0.008) (0.695) (0.015) (0.592)

-0.904 0.039

(0.014) (0.795)

4.011 2.452 4.010 2.454 3.579 2.405 3.586 2.402 3.154 2.458 3.175 2.451 3.163 2.458

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Probability Parameters:

Observations

Number of parameters

Log likelihood

Hannan-Quinn criterion

Intercept

Bubble Size

Abnormal % 12M Volume

Abnormal % 6M Volume

Fed Fund Rate

Sentiment Index (Orthogonal)

Dependent Variable: Returns

without Fed Fund Rate with Fed Fund Rate

(7) (7') (cubic terms) (10') (cubic terms) (11) (11') (6M volume) (11'') (Raw BW Sentiment)

(0.082)

Volatility

Intercept
0.928 0.615 0.903 -1.511 -1.170 -1.689

abs(Bubble Size)
11.357 18.558 -16.422 7.393 6.946

(0.091) (0.318) (0.189) (0.115) (0.129)

6.849

(0.004) (0.022) (0.048) (0.083) (0.098) (0.107)(0.016)

9.083

0.019

(0.756) (0.757) (0.564) (0.633)
abs(Abnormal % 12M Volume)

-0.008 -0.008 0.022

abs(Abnormal % 6M Volume)
-0.002

(0.934)

7.332

(0.132) (0.000) (0.000) (0.000)
abs(Fed Fund Rate)

-5.098 7.587 6.893

(0.538) (0.238)
abs(Orthogonal Sentiment Index)

0.503 1.016

Bubble Size^2
-22.581 -54.367 51.516 -16.256 -16.128

1.381

(0.110)
abs(Raw BW Sentiment Index)

-15.572

(0.001) (0.0086) (0.112) (0.019) (0.018) (0.024)(0.002)

-19.373

0.000

(0.639) (0.633) (0.374) (0.427)
Abnormal % 12M Volume^2

-1.410E-04 -1.430E-04 -4.840E-04

Fed Fund Rate^2
3.442 -3.821 -3.501

(0.774)
Abnormal % 6M Volume^2

0.000

-3.686

(0.564) (0.001) (0.003) (0.002)(0.039)

-2.223

(0.173) (0.064)
Orthogonal Sentiment Index^2

-0.398 -0.569

-0.725

(0.025)
Raw BW Sentiment Index^2

(0.299) (0.304)
[abs(Bubble Size)]^3

36.183 -36.435

(0.828)
[abs(Fed Fund Rate)]^3

-0.604

-2101.208 -2093.725 -1728.673 -1725.855 -1727.684

829 829 829 684 684 684

Sentiment Index (Raw)

Time-Varying Probability Switching Regressions

13 13

829

-2094.307

5.122

21 2115 17 21

(10)

-0.497

(0.341)

(0.003)

4.498

5.130 5.134 5.129 5.170 5.162 5.167

-2101.738
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Table 5: Robustness Checks Concerning Models in which Monetary Policy is Proxied by Wu’s Shadow Rate 

The table presents the ML estimates of a range of regime switching models in which a selection of variables—including and excluding the US shadow 

rate—are driving the probabilities of a regime shift from and to a bubble. For most models, the sample is December 1954 - December 2023. When 

Baker and Wurgler's orthogonalized sentiment index is employed, the sample is instead July 1965 - June 2022. P-values are reported in the 

parentheses. 

  

(1) (2) (3)
Regime Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse

0.699 0.792 0.638 -1.146 1.227 -0.764 1.638 -1.111 1.583 -1.615 1.245 -0.679 1.508 -0.430 1.598 -0.296 1.599 -0.288 1.664 -0.254 1.606
(0.000) (0.000) (0.012) (0.013) (0.000) (0.232) (0.000) (0.114) (0.000) (0.008) (0.000) (0.206) (0.000) (0.478) (0.000) (0.572) (0.000) (0.531) (0.000) (0.533) (0.000)

1.476 1.345 1.763 6.801 -0.127 6.541 -0.675 4.500 0.054 5.938 -0.049 2.607 -0.061 5.469 -0.442 5.379 -0.456 6.552 -0.365 6.983 -0.353
(0.004) (0.019) (0.007) (0.000) (0.806) (0.000) (0.250) (0.001) (0.922) (0.000) (0.925) (0.045) (0.941) (0.001) (0.479) (0.000) (0.476) (0.000) (0.588) (0.000) (0.629)

0.014 0.014 0.009 -0.114 0.065 -0.116 0.066 -0.123 0.060 -0.107 0.061 -0.118 0.067 -0.119 0.068 -0.117 0.075 -0.114 0.012
(0.037) (0.034) (0.239) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.011) (0.641) (0.000) (0.936)

-0.235 0.102 -1.259 -1.028 -3.369 -0.884 -2.805 -1.044 -2.852 -1.020 -3.312 -1.199 -3.105 -1.148
(0.593) (0.831) (0.345) (0.012) (0.003) (0.032) (0.080) (0.013) (0.054) (0.018) (0.012) (0.017) (0.019) (0.030)

-0.347 -0.566 -0.053 -0.926 0.069 -1.027 0.077
(0.021) (0.099) (0.773) (0.000) (0.000) (0.006) (0.000)

3.504 3.506 3.581 3.820 2.407 3.787 2.398 4.011 2.452 5.128 2.334 3.763 2.408 3.689 2.388 3.338 2.425 3.322 2.421
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Probability Parameters:

Observations 829 829 684

Number of parameters 4 5 6

Log likelihood -2214.389 -2214.245 -1840.552

Hannan-Quinn criterion 5.356 5.360 5.409

9 11 10 13 13 17 15 21 17

with Shadow Rate
Time-Varying Probability Switching Regressions

Linear Single State
without Shadow Rate

Switching Regressions

-1.252
(0.000)

-1.655
(0.000)

(4) (8)

(0.217)
-1.540
(0.019)

(5)

5.135 5.164

2.675
(0.000)

(7)

0.928

(0.004)

(0.091)

11.357

-0.008

-22.581

-1.410E-04

(6)

5.130

(0.827)

(0.639)

-33.495
(0.001) (0.022)

Dependent variable: Returns

-0.375

(0.012)

-20.616

-1.330E-04

-2.803

(0.595)

(0.911)

(9) (10) (11) (12)

(0.002)

-0.666

-1.055
(0.266)

0.086

Intercept

Bubble Size

Abnormal % Volume

Shadow Rate

Sentiment Index

Volatility

(0.701)

abs(Bubble Size)

abs(Abnormal % Volume)

abs(Shadow Rate)

abs(Sentiment Index)

Bubble Size^2

Abnormal % Volume^2

Shadow Rate^2

Sentiment Index^2

(0.001)

(0.026)

9.625

-0.003

5.059

9.560
(0.012)

Intercept

(0.003)

0.755
(0.346)

15.273

(0.756)

(0.030)

-1.213
(0.000)

(0.198)

(0.022)

-1.489
(0.099)

8.134
(0.054)

0.013
(0.733)

8.164
(0.000)

0.442
(0.588)

-17.732
(0.010)

-3.770E-04

-20.506
(0.001)

-2.814

5.209

8.514
(0.033)

(0.472)

-4.391
(0.001)

-0.380

(0.005)

-18.323
(0.005)

-3.650

7.264
(0.000)

684

-2111.586 -2107.349 -2121.395 -2101.738 -1780.956

5.279

-2092.077

5.125

-2093.166

5.119

-1727.764

5.167

-1731.987

5.158

829 829 829 829 684 829 829 684

5.136
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Table 6: Robustness Checks Concerning Models in which the Relative Bubble Size is Estimated Using Campbell and Shiller’s Method 

The table presents the ML estimates of a range of regime switching models in which a selection of variables—including and excluding the FFR—

drive the probabilities of a regime shift from and to a bubble state. For all models the sample is February 1971 - December 2023. P-values are 

reported in the parentheses. 

 

(1) (2)

Regime Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse Bubble Collapse

0.908 1.004 -0.675 1.361 -0.035 1.794 -0.095 1.829 -0.878 1.467 0.707 1.702

(0.000) (0.000) (0.209) (0.000) (0.960) (0.000) (0.865) (0.000) (0.161) (0.000) (0.064) (0.000)

0.296 0.196 2.373 0.134 1.710 -0.252 2.070 -0.308 2.402 0.087 1.584 0.135

(0.424) (0.648) (0.030) (0.710) (0.176) (0.546) (0.104) (0.515) (0.097) (0.811) (0.218) (0.745)

0.001 0.001 -0.120 0.064 -0.124 0.067 -0.145 0.073 -0.136 0.070 -0.129 0.076
(0.950) (0.923) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-0.236 -1.908 -1.014 -0.322 -1.540 -4.921 -1.061
(0.647) (0.183) (0.040) (0.830) (0.009) (0.001) (0.074)

3.638 3.640 3.954 2.511 3.856 2.495 4.110 2.476 3.181 2.579

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Probability Parameters:

Observations 635 635

Number of parameters 4 5
Log likelihood -1719.607 -1719.501

Hannan-Quinn criterion 5.434 5.439

(10)(6) (7)

(0.018) (0.075)
-1.308 -1.084

Dependent variable: Returns

Linear Single State Switching Regressions
Time-Varying Probability Switching Regressions

without Fed Fund Rate with Fed Fund Rate

Intercept

Bubble Size

Abnormal % Volume

(4) (5)

Fed Fund Rate

Volatility
2.877

(0.000)

Intercept
-1.108 -1.135 -1.153
(0.000) (0.000) (0.000)

(0.551)

(0.599)

abs(Abnormal % Volume)
0.015

abs(Bubble Size)
-0.672 1.115
(0.717)

(0.000)
abs(Fed Fund Rate)

7.020

(0.748) (0.596)
Bubble Size^2

0.509 -0.971

(0.901)
Abnormal % Volume^2

3.750E-05

(0.002)
Fed Fund Rate^2

-3.564

635

-1646.234 -1642.450 -1651.370 -1642.110 -1629.551

635 635 635 635

15109 11 13

5.238 5.238 5.260 5.248 5.221



58 

Table 7: Statistical Performance Measures from a Recursive Out-of-Sample Forecasting Exercise 

The table presents the relative, realised OOS forecasting performance of a range of regime switching models in which a selection of variables—

including and excluding the FFR—drives the probabilities of a regime shift from and to a bubble state. For all models the sample is February 1971 

- December 2023. The statistical measures of forecasting accuracy are reported in relative terms: in the top panel, the RMSFE and MAFE of models 

1, 2, 5, 6, 7, 10, and 12 are reported as a ratio of the statistics obtained for model 0; in the bottom panel, the RMSFE and MAFE of models 0, 2, 5, 6, 

7, 10, and 12 are reported as a ratio of the statistics obtained for model 1. Model 0 is the historical average of returns, while model 1 consists of a 

single-state regression model. The last two rows are instead reported for all models in terms of absolute statistical measures. For each indicator of 

statistical realised OOS performance, we have boldfaced the model that achieves the highest accuracy. 

 

 

 

  

without Fed Fund Rate

vs. Model (0) (0) (1) (2) (5) (6) (7) (10) (12)

RMSFE __ 0.970 0.970 0.971 0.969 0.946 0.955 0.957

MAFE __ 0.969 0.953 0.954 0.954 0.947 0.940 0.927

vs. Model (1)

RMSFE 1.030 __ 0.999 1.000 0.999 0.975 0.984 0.986

MAFE 1.032 __ 0.984 0.984 0.984 0.977 0.970 0.957

Success Rate 62.15% 64.58% 65.63% 65.63% 65.97% 67.36% 65.63% 67.90%

OOS R-squared 0.000 0.058 0.060 0.057 0.060 0.105 0.088 0.085

Statistical Performance Measures

Linear Single State Switching Regressions
Time-Varying Probability Switching Regressions

with Fed Fund Rate
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Table 8: Economic Value Performance Measures from a Recursive Out-of-Sample Forecasting Exercise, No Transaction Costs 

The table presents the realised OOS portfolio performances of two strategies (switching and mean-variance) computed with reference to a range 

of regime switching models in which a selection of variables—including and excluding the FFR—drives the probabilities of a regime shift from and 

to a bubble state. For all models the sample is February 1971 - December 2023. The second column of the table also features results for the S&P 

500 index, taken to represent a benchmark. The model providing the best performance is emphasised by boldfacing the corresponding result. 

   

Strategy

γ 0.5 2 3 0.5 2 3 0.5 2 3 0.5 2 3 0.5 2 3

Mean Return 7.68 7.68 2.50 1.84 1.77 9.69 3.44 2.08 1.93 10.13 3.99 2.22 2.02 10.09 3.90 2.20 2.01 10.30 3.78 2.17 1.99

Standard Deviation 13.03 13.03 1.65 0.62 0.56 10.18 1.87 0.65 0.57 11.54 2.33 0.72 0.60 11.64 2.33 0.72 0.60 11.61 2.30 0.72 0.60

α __ 0.00 0.01 0.002 0.002 0.36 0.10 0.03 0.02 0.31 0.13 0.03 0.02 0.30 0.12 0.03 0.02 0.32 0.11 0.03 0.02

(0.00) (0.003) (0.001) (0.001) (0.11) (0.02) (0.01) (0.004) (0.09) (0.03) (0.01) (0.005) (0.09) (0.03) (0.01) (0.004) (0.09) (0.03) (0.01) (0.004)

β __ 1.00 0.12 0.03 0.02 0.63 0.10 0.02 0.02 0.81 0.14 0.03 0.02 0.82 0.14 0.04 0.02 0.82 0.14 0.04 0.02

(0.00) (0.001)(0.0002)(0.0002) (0.03) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002) (0.001) (0.02) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002)(0.001)

Treynor Ratio 

(annual)
__ 0.061 0.070 0.069 0.069 0.127 0.187 0.187 0.187 0.106 0.174 0.175 0.174 0.104 0.160 0.160 0.159 0.106 0.152 0.152 0.152

Sharpe Ratio 

(annual)
0.46 0.46 0.53 0.35 0.26 0.79 0.97 0.70 0.53 0.74 1.01 0.82 0.65 0.73 0.98 0.79 0.63 0.75 0.93 0.75 0.59

Turnover __ 0.003 0.003 0.001 0.001 0.27 0.09 0.02 0.02 0.19 0.10 0.02 0.02 0.16 0.09 0.02 0.02 0.16 0.09 0.02 0.01

Strategy

γ 0.5 2 3 0.5 2 3 0.5 2 3

Mean Return 7.68 11.90 3.81 2.17 1.99 10.58 4.36 2.31 2.08 10.42 4.06 2.11 1.89

Standard Deviation 13.03 9.65 1.70 0.62 0.56 10.32 2.34 0.72 0.60 11.77 2.25 0.70 0.59

α __ 0.57 0.14 0.03 0.02 0.42 0.16 0.04 0.03 0.35 0.16 0.04 0.03

(0.11) (0.02) (0.01) (0.004) (0.11) (0.03) (0.01) (0.005) (0.08) (0.03) (0.01) (0.005)

β __ 0.59 0.09 0.02 0.02 0.65 0.13 0.03 0.02 0.84 0.13 0.03 0.02

(0.03) (0.01) (0.002) (0.001) (0.03) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002) (0.001)

Treynor Ratio 

(annual)
__ 0.174 0.237 0.237 0.238 0.137 0.204 0.204 0.204 0.106 0.198 0.198 0.199

Sharpe Ratio 

(annual)
0.46 1.06 1.29 0.88 0.65 0.87 1.17 0.95 0.76 0.76 1.16 0.93 0.74

Turnover __ 0.16 0.07 0.02 0.01 0.12 0.08 0.02 0.01 0.17 0.09 0.02 0.01

S&P

Portfolio Performances without Transaction Costs

mean-variance

(0)

mean-variance

(1)

mean-variance

(2)

switching switching
mean-variance

(5)

mean-variance

(6)

switching switching

Linear Single State Switching Regressions

S&P

(7)

Time-Varying Probability Switching Regressions

without Fed Fund Rate with Fed Fund Rate
(12)

switching
mean-variance mean-variance mean-variance

(10)

switching

switching switching



60 

Table 9: Economic Value Performance Measures from a Recursive Out-of-Sample Forecasting Exercise, With Transaction Costs 

The table presents the realised OOS portfolio performances of two strategies (switching and mean-variance) computed with reference to a range 

of regime switching models in which a selection of variables—including and excluding the FFR—drives the probabilities of a regime shift from and 

to a bubble state. The second column of the table also features results for the S&P 500 index, taken to represent a benchmark. The model providing 

the best performance is emphasised by boldfacing the corresponding result. The transaction costs are applied ex-post and they have the two-part 

(fixed and variable) structure described in the main text. 

   

Strategy switching

γ 0.5 2 3 0.5 2 3 0.5 2 3 0.5 2 3 0.5 2 3

Mean Return 7.68 7.68 2.19 1.54 1.47 9.13 3.00 1.76 1.63 9.73 3.53 1.90 1.71 9.75 3.45 1.87 1.70 9.96 3.34 1.84 1.68

Standard Deviation 13.03 13.03 1.65 0.62 0.56 10.20 1.86 0.65 0.57 11.54 2.33 0.72 0.61 11.64 2.32 0.73 0.61 11.61 2.30 0.72 0.61

α __ -0.001 -0.02 -0.02 -0.02 0.31 0.07 -0.001 -0.01 0.27 0.09 0.01 -0.004 0.27 0.08 0.003 -0.01 0.29 0.07 0.001 -0.01

(0.001) (0.003) (0.001) (0.001) (0.11) (0.02) (0.01) (0.004) (0.09) (0.03) (0.01) (0.005) (0.09) (0.03) (0.01) (0.004) (0.09) (0.03) (0.01) (0.004)

β __ 1.00 0.12 0.03 0.02 0.63 0.10 0.02 0.02 0.80 0.13 0.03 0.02 0.82 0.14 0.03 0.02 0.82 0.14 0.03 0.02

(0.0002) (0.001)(0.0004)(0.0004) (0.03) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002) (0.001) (0.02) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002)(0.001)

Treynor Ratio 

(annual)
__ 0.060 0.045 -0.028 -0.078 0.119 0.144 0.059 -0.001 0.101 0.143 0.082 0.040 0.099 0.130 0.072 0.032 0.102 0.122 0.063 0.023

Sharpe Ratio 

(annual)
0.46 0.46 0.34 -0.14 -0.28 0.74 0.74 0.21 -0.002 0.70 0.82 0.37 0.14 0.70 0.79 0.34 0.12 0.72 0.74 0.30 0.08

Turnover __ 0.003 0.003 0.001 0.001 0.27 0.09 0.02 0.02 0.19 0.10 0.02 0.02 0.16 0.09 0.02 0.02 0.16 0.09 0.02 0.01

Strategy

γ 0.5 2 3 0.5 2 3 0.5 2 3

Mean Return 7.68 11.57 3.41 1.86 1.69 10.32 3.95 2.01 1.79 10.07 3.62 1.79 1.59

Standard Deviation 13.03 9.64 1.69 0.62 0.56 10.32 2.33 0.72 0.61 11.77 2.24 0.70 0.59

α __ 0.54 0.10 0.01 -0.002 0.40 0.13 0.02 0.003 0.32 0.12 0.01 0.0004

(0.11) (0.02) (0.01) (0.004) (0.10) (0.03) (0.01) (0.005) (0.08) (0.03) (0.01) (0.005)

β __ 0.59 0.09 0.02 0.01 0.65 0.13 0.03 0.02 0.84 0.13 0.03 0.02

(0.03) (0.01) (0.001) (0.001) (0.03) (0.01) (0.002)(0.001) (0.02) (0.01) (0.002) (0.001)

Treynor Ratio 

(annual)
__ 0.168 0.196 0.107 0.044 0.133 0.175 0.117 0.076 0.102 0.166 0.104 0.060

Sharpe Ratio 

(annual)
0.46 1.03 1.05 0.38 0.11 0.84 1.00 0.52 0.27 0.73 0.96 0.47 0.21

Turnover __ 0.16 0.07 0.02 0.01 0.12 0.08 0.02 0.01 0.17 0.09 0.02 0.01

mean-variance

S&P

(0) (1) (2)

mean-variance

(5) (6)

mean-variancemean-variance

(10) (12)

Time-Varying Probability Switching Regressions

without Fed Fund Rate with Fed Fund Rate

switching switching
mean-variance

switching switching

Linear Single State Switching Regressions

switchingswitching
mean-variance

switching
mean-variance mean-variance

S&P

(7)

Portfolio Performances with Transaction Costs
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Figure 1: Behaviour of the Relative Size of Bubbles in the S&P Index Computed According to Two Alternative Methods  
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Figure 2: Behaviour of the Probability of a Bubble Surviving as a Function of the Relative Size of a Bubble and of the Short-Term Rate  
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Figure 3: Comparing 1-Year Moving Averages of Real-Time Filtered Probabilities of 

a Bubble Regime Across Alternative Models 

The shaded periods represent spells of quantitative easing policies. The solid, vertical bars 

denote end of alleged bubbles. 
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Figure 4: Comparing 1-Year Moving Averages of Real-Time Filtered Probabilities of 

a Bubble Regime Across Alternative Models: Robustness checks  

The shaded periods represent spells of quantitative easing policies. The solid, vertical bars 

denote end of alleged bubbles. 
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Figure 5: Behaviour of the Probability of a Bubble Surviving as a Function of bt and of srt in Alternative Models 

 

  



66 

Figure 6: Behaviour of the Probability of a Bubble Surviving as a Function of bt and of srt 

when the Relative Bubble is Estimated under the Second Method 
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Figure 7: Comparing 1-Year Moving Averages of Real-Time Filtered Probabilities of a 

Bubble Regime Across Alternative Methods of Relative Bubble Estimation  

The shaded periods represent spells of quantitative easing policies. The solid, vertical bars denote 

end of alleged bubbles. 
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Figure 8: Optimal Portfolio Weights to the S&P 5   under Alternative Models for 

Switching and Mean-Variance  with 𝜸 = 𝟎. 𝟓  Strategies, after Transaction Costs 
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Figure 9: Portfolio Strategy Results under Benchmark Model    Arithmetic Sample 
Mean  for Switching and Mean-Variance Portfolio  with 𝜸 = 𝟐  Strategies, after 
Transaction Costs 
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Figure 1 : Portfolio Strategy Results under Model 7  Regime Switching, Periodically 

Collapsing Bubbles without the Impact of the FFR on Time-Varying Probs   for Switching 

and Mean-Variance Portfolio  with 𝜸 = 𝟐  Strategies, after Transaction Costs 
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Figure 11: Portfolio Strategy Results under Model 1   Regime Switching, Periodically 

Collapsing Bubble with Impact of the FFR on Time-Varying Probs   for Switching and 

Mean-Variance Portfolio  with 𝜸 = 𝟐  Strategies 
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Appendix A: Derivation of the Regime Switching Model 

In order to linearise the model, we take the first order Taylor series approximation around an 
arbitrary triple 𝑏0, 𝑠𝑟0, and 𝑉0

𝑥  and arrive at a switching regression model that has a single state-

independent probability of switching regimes (𝑞(𝑏𝑡, 𝑠𝑟𝑡 , 𝑉𝑡
𝑥)). 

Start from the no-arbitrage relationships 

𝐸(𝑟𝑡+1|𝑆) = [𝜇(1 − 𝑏𝑡) +
𝜇

𝑞(𝑏𝑡 , 𝑠𝑟𝑡 , 𝑉𝑡
𝑥)

𝑏𝑡 −
1 − 𝑞(𝑏𝑡 , 𝑠𝑟𝑡 , 𝑉𝑡

𝑥)

𝑞(𝑏𝑡, 𝑠𝑟𝑡 , 𝑉𝑡
𝑥)

𝑢(𝑏0, 𝑠𝑟0)]   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝑞(𝑏𝑡 , 𝑠𝑟𝑡 , 𝑉𝑡
𝑥) 

𝐸(𝑟𝑡+1|𝐶) = [𝜇(1 − 𝑏𝑡) + 𝑢(𝑏𝑡, 𝑠𝑟𝑡)]                                                                       𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.−𝑞(𝑏𝑡, 𝑠𝑟𝑡 , 𝑉𝑡
𝑥) 

where S and C are the survival and the collapsing regimes, respectively; 𝑢(𝑏𝑡, 𝑠𝑟𝑡) is a continuous 

and everywhere differentiable function such that 𝑢(0) = 0 and 0 ≤
𝜕𝑢(𝑏𝑡,𝑠𝑟𝑡)

𝜕𝑏𝑡
≤ 1, to be interpreted 

as the real value of the bubble after it partially collapses; 𝑞(𝑏𝑡, 𝑠𝑟𝑡 , 𝑉𝑡
𝑥) is the probability of the 

bubble continuing to exist, that is plausibly assumed to be a function of the absolute value of the 
relative size of the bubble, of the short-term interest rate, and of trading volume. 

As it is well known, the (first-order) Taylor series expansion of a function 𝑓(𝑥, 𝑦) is given by: 

𝑓(𝑥, 𝑦, 𝑧) = (𝑓(𝑥0, 𝑦0, 𝑧0) − 𝑓𝑥
′(𝑥0, 𝑦0, 𝑧0)𝑥0 − 𝑓𝑦

′(𝑥0, 𝑦0, 𝑧0)𝑦0 − 𝑓𝑧
′(𝑥0, 𝑦0, 𝑧0)𝑧0) + 𝑓𝑥

′(𝑥0, 𝑦0, 𝑧0)𝑥

+ 𝑓𝑦
′(𝑥0, 𝑦0, 𝑧0)𝑦 + 𝑓𝑧

′(𝑥0, 𝑦0, 𝑧0)𝑧 

where 𝑓𝑥
′(𝑥, 𝑦, 𝑧) is the partial derivative of 𝑓(𝑥, 𝑦, 𝑧) with respect to 𝑥 and 𝑓𝑦

′(𝑥, 𝑦, 𝑧) and 𝑓𝑧
′(𝑥, 𝑦, 𝑧) 

are defined accordingly. Note that in what follows we shall use the notation 

𝜕𝑔(𝑤0)

𝜕𝑤
≡

𝜕𝑔(𝑤)

𝜕𝑤
⌉
𝑤=𝑤0

. 

Under this setting, with reference to expected returns in the bubble surviving state, the Taylor 
Series approximation can be derived as: 

𝑓(𝑏0, 𝑠𝑟0, 𝑉0
𝑥) = 𝜇(1 − 𝑏0) +

𝜇𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

−
𝑢(𝑏0, 𝑠𝑟0) − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝑢(𝑏0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

 

and: 

𝑓𝑏
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −𝜇 + [
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝜇 − 𝜇𝑏0
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

−

[
 
 
 
 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) (
𝜕(𝑏0, 𝑠𝑟0)

𝜕𝑏
− (𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕(𝑏0, 𝑠𝑟0)

𝜕𝑏
+ 𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
))

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

−
𝑢(𝑏0, 𝑠𝑟0)(1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥))
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]
 
 
 
 

 

We can rewrite the second part on the right-hand side as: 
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[
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝜇 − 𝜇𝑏0
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

] = [
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

−
𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
] 

= [
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

−
𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
] =

𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0] 

Finally, the third part on the right-hand side can be rewritten as: 

[
 
 
 
 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) (
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
− (𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑢(𝑏0)

𝜕𝑏
+ 𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
))

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

− 
𝑢(𝑏0, 𝑠𝑟0)(1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥))
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

 

= [
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
− 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2 𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑏

− 𝑢(𝑏0, 𝑠𝑟0)𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑉0

𝑥)2

+
−

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑢(𝑏0, 𝑠𝑟0) + 𝑢(𝑏0, 𝑠𝑟0)𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= [
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
− 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2 𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑏

−
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑢(𝑏0, 𝑠𝑟0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= [
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
− 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2 𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

−

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑢(𝑏0, 𝑠𝑟0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= [
(1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥))𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
−

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑢(𝑏0, 𝑠𝑟0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= [−

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0) +

(1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥))

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
] 

Substituting back into the main equation, we obtain: 

𝑓𝑏
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0]

− [−

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0) +

(1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥))

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
] 
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= −𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0] +

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0)

−
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

Conversely: 

𝑓𝑉
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

= −𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

  

−

[
 
 
 
 (𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) (−𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑉𝑥 )) − ((𝑢(𝑏0, 𝑠𝑟0) − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝑢(𝑏0))
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑉𝑥 )

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]
 
 
 
 

= −𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

− [
−𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= −𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

+

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

𝑢(𝑏0, 𝑠𝑟0) = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

 

Similarly, through similar steps, we have that: 

𝑓𝑠𝑟
′ (𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2

−

[
 
 
 
 (𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) (𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑠𝑟

− 𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑠𝑟

))

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

−

((𝑢(𝑏0, 𝑠𝑟0) − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)𝑢(𝑏0, 𝑠𝑟0))

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]
 
 
 
 

= −𝜇𝑏0

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
− [

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑠𝑟

− 𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑠𝑟

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

]

= [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
−

𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑠𝑟

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

 

Recalling now that 

𝑓(𝑥, 𝑦, 𝑧) = (𝑓(𝑥0, 𝑦0, 𝑧0) − 𝑓𝑥
′(𝑥0, 𝑦0, 𝑧0)𝑥0 − 𝑓𝑦

′(𝑥0, 𝑦0, 𝑧0)𝑦0 − 𝑓𝑧
′(𝑥0, 𝑦0, 𝑧0)𝑧0) + 𝑓𝑥

′(𝑥0, 𝑦0, 𝑧0)𝑥

+ 𝑓𝑦
′(𝑥0, 𝑦0, 𝑧0)𝑦 + 𝑓𝑧

′(𝑥0, 𝑦0, 𝑧0)𝑧 

where: 

𝑓(𝑏0, 𝑠𝑟0, 𝑉0
𝑥) = 𝜇(1 − 𝑏0) +

𝜇𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

−
𝑢(𝑏0, 𝑠𝑟0) − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝑢(𝑏0, 𝑠𝑟0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)
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𝑓𝑏
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0] +

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0)

−
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

𝑓𝑉
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

 

𝑓𝑠𝑟
′ (𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
−

𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑠𝑟

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

 

Renaming the coefficients and substituting, we can rewrite the expression for conditionally 
expected returns as: 

𝐸(𝑟𝑡+1|𝑆) = 𝛽𝑆,0 + 𝛽𝑆,𝑏𝑏𝑡 + 𝛽𝑆,𝑠𝑟𝑠𝑟𝑡 + 𝛽𝑆,𝑉𝑉𝑡
𝑥 

where: 

𝛽𝑆,0 =

[
 
 
 

[𝜇(1 − 𝑏0) +
𝜇𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

−
𝑢(𝑏0, 𝑠𝑟0) − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)𝑢(𝑏0)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

]

− [−𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0] +

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0)

−
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
] 𝑏0 − (𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

𝑉0
𝑥

− (𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑠𝑟0

]
 
 
 

= [𝜇 +
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
𝑏0 − 𝑢(𝑏0, 𝑠𝑟0)]

+ [
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝑏0 − 𝑢(𝑏0, 𝑠𝑟0)]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0 

          +(𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

𝑉0
𝑥 + (𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑠𝑟0] 

𝛽𝑆,𝑏 = −𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0] +

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0)

−
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
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𝛽𝑆,𝑠𝑟 = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
−

𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑠𝑟

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

 

𝛽𝑆,𝑉 = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

 

In the same way, we can derive the Taylor series approximation of the returns in the collapsing 
regime, when 

𝑓(𝑏0, 𝑠𝑟0, 𝑉0
𝑥) =  𝜇(1 − 𝑏0) + 𝑢(𝑏0, 𝑠𝑟0) 

𝑓𝑏
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −𝜇 +
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

𝑓𝑠𝑟
′ (𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = −
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑠𝑟
 

𝑓𝑉
′(𝑏0, 𝑠𝑟0, 𝑉0

𝑥) = 0 

Moreover, we can show that 

𝐸(𝑟𝑡+1|𝐶) = 𝛽𝐶,0 + 𝛽𝐶,𝑏𝑏𝑡 + 𝛽𝐶,𝑠𝑟𝑏𝑡 

where: 

𝛽𝐶,0 = 𝜇 + 𝑢(𝑏0, 𝑠𝑟0) −
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
𝑏0 

𝛽𝐶,𝑏 = −𝜇 +
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

𝛽𝐶,𝑠𝑟 =
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

Since we have defined the probability of survival as: 

𝑃𝑟(𝑆) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡
2 + 𝜓𝑞,𝑠𝑟𝑎𝑏𝑠|𝑠𝑟| + 𝛽𝑞,𝑠𝑟𝑠𝑞𝑟𝑠𝑟𝑡

2 + 𝛾𝑞,𝑉𝑉𝑡
𝑥) 

the full linearised model is: 

𝐸(𝑟𝑡+1|𝑊𝑡+1 = 𝑆) = 𝛽𝑆,0 + 𝛽𝑆,𝑏𝑏𝑡 + 𝛽𝑆,𝑠𝑟𝑠𝑟𝑡 + 𝛽𝑆,𝑉𝑉𝑡
𝑥 

𝐸(𝑟𝑡+1|𝑊𝑡+1 = 𝐶) = 𝛽𝐶,0 + 𝛽𝐶,𝑏𝑏𝑡 + 𝛽𝐶,𝑠𝑟𝑠𝑟𝑡  

𝑃𝑟(𝑆) = ℓ(𝛽𝑞,0 + 𝛽𝑞,𝑏𝑎𝑏𝑠|𝑏𝑡| + 𝛽𝑞,𝑏𝑠𝑞𝑟𝑏𝑡
2 + 𝜓𝑞,𝑠𝑟𝑎𝑏𝑠|𝑠𝑟| + 𝛽𝑞,𝑠𝑟𝑠𝑞𝑟𝑠𝑟𝑡

2 + 𝛾𝑞,𝑉𝑉𝑡
𝑥). 

In our empirical application, we shall also include the term 𝛽𝐶,𝑉𝑉𝑡
𝑥 in the regime-dependent 

regression in the collapsing state, thus allowing the data to reject its presence. Its formal inclusion 
would require to also make the 𝑢(∙) function depend on 𝑉𝑡

𝑥 , a fact that we do not find implausible 
but that we refrain from imposing as a matter of logical necessity. 
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Appendix B: Derivation of the Restrictions on the Coefficients of the 
Switching Regression Model 

From the model described in the main text and in Appendix A, we can derive certain conditions that 
must hold if a speculative bubble is present in stock prices, as always under the restriction that the 
bubble component follows the process assumed. 

Firstly, we know that the coefficients 𝛽𝑞,𝑏 and 𝛾𝑞,𝑉 must be negative by construction if the 

speculative bubble model theory is correct. Secondly, the coefficient on the bubble component in 
the collapsing regime should have a negative sign. This is because, from the derivation of the 
augmented regression model, we known that: 

𝜕𝐸𝑡(𝑟𝑡+1|𝐶)

𝜕𝑏𝑡

= −𝜇 +
𝜕𝑢(𝑏𝑡, 𝑠𝑟𝑡)

𝜕𝑏𝑡

−
𝜕𝑢(𝑏0, 𝑠𝑟𝑡)

𝜕𝑠𝑟𝑡
. 

Remember that under a standard Gordon’s growth model, it must be: 

𝜇 =
(1 + 𝜌)ⅇ𝑎0

𝜌
= (1 +

1

𝜌
) ⅇ𝑎0 > 1, 

where 𝜌 is the long-run price-dividend ratio. Since dividends tend to grow rather than shrink over 
time, 𝑎0 should be positive and thus −𝜇 should be smaller than -1. This is the logical assumption for 
us to make as stocks must have a positive expected fundamental return for a rational investor to 
hold equity. However, because the bubble must shrink in the collapsing regime, we know that: 

0 ≤
𝜕𝑢(𝑏𝑡, 𝑠𝑟𝑡)

𝜕𝑏𝑡

≤ 1. 

This implies that the second term in  
𝜕𝐸𝑡(𝑟𝑡+1|𝐶)

𝜕𝑏𝑡
= −𝜇 +

𝜕𝑢(𝑏𝑡)

𝜕𝑏𝑡
 is smaller than 1 and thus the 

coefficient 𝛽𝐶,𝑏 must be smaller than −
𝜕𝑢(𝑏0,𝑠𝑟0)

𝜕𝑠𝑟𝑡
. If we assume that 

𝜕𝑢(𝑏0,𝑠𝑟0)

𝜕𝑠𝑟𝑡
> 0, i.e., higher rates 

tend to make a bubble collapse more likely and frequent (i.e., the duration of the bubbles is lower) 
but their collapse less pronounced, then this yields 

𝜕𝐸𝑡(𝑟𝑡+1|𝐶)

𝜕𝑏𝑡

= −𝜇 +
𝜕𝑢(𝑏𝑡 , 𝑠𝑟𝑡)

𝜕𝑏𝑡

−
𝜕𝑢(𝑏𝑡 , 𝑠𝑟𝑡)

𝜕𝑠𝑟𝑡
< −

𝜕𝑢(𝑏𝑡 , 𝑠𝑟𝑡)

𝜕𝑠𝑟𝑡
< 0. 

In the same way, we can derive the condition that 𝛽𝑆,𝑏 > 𝛽𝐶,𝑏: 

𝛽𝑆,𝑏 =
𝜕𝐸𝑡(𝑟𝑡+1|𝑆)

𝜕𝑏𝑡

= −𝜇 +
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[1 −
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0]

+
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0) −

1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
 

            = −𝜇 +
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
−

𝜕𝑢(𝑏0, 𝑠𝑟0)
𝜕𝑏

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

+
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

− 𝜇
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

+
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0) 
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But we know that: 

𝛽𝐶,𝑏 =
𝜕𝐸𝑡(𝑟𝑡+1|𝐶)

𝜕𝑏𝑡

= −𝜇 +
𝜕𝑢(𝑏𝑡 , 𝑠𝑟𝑡)

𝜕𝑏𝑡

−
𝜕𝑢(𝑏𝑡 , 𝑠𝑟𝑡)

𝜕𝑠𝑟𝑡
 

which must also hold for the special case (𝑏𝑡 , 𝑠𝑟𝑡) = (𝑏0, 𝑠𝑟𝑜). Thus substituting, rearranging and 
simplifying: 

𝛽𝑆,𝑏 =
𝜕𝐸𝑡(𝑟𝑡+1|𝐶)

𝜕𝑏𝑡

= 𝛽𝐶,𝑏 +
𝜕𝑢(𝑏𝑡, 𝑠𝑟𝑡)

𝜕𝑠𝑟
+

𝜇 −
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
− 𝜇

𝑠𝑖𝑔𝑛(𝑏0)
𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝜕𝑏

𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

+
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑢(𝑏0, 𝑠𝑟0) 

The third term is positive and so, when 𝑠𝑖𝑔𝑛(𝑏0) = +1, i.e., as long as the bubble is positive, is the 
fourth term since: 

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
< 0 

The fifth term is negative but smaller in absolute value than the sum of the third and the fourth 
terms as 

[𝑢(𝑏0, 𝑠𝑟0) − 𝜇]
𝑠𝑖𝑔𝑛(𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑏0

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

> 0 

Therefore 
𝜕𝑢(𝑏𝑡,𝑠𝑟𝑡)

𝜕𝑠𝑟𝑡
> 0 turns out to be sufficient for 𝛽𝑆,𝐵 > 𝛽𝐶,𝐵, however, we cannot say anything 

about the sign of this coefficient since it depends on relative size of all the parts. However, when the 
bubble is negative, 𝛽𝑆,𝐵 ≤ 𝛽𝐶,𝐵 becomes possible. 

Finally, we show that: 

𝛽𝑆,𝑉 = [𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

 

The term outside brackets of this equation is negative since: 

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥
< 0 

Furthermore, the term inside brackets is also negative since 𝑢(𝑏0, 𝑠𝑟0) ≤ 𝑏0 and we know that 𝜇 is 
greater than 1. Therefore, the product of the two terms is positive and thus 𝛽𝑆,𝑉 is always positive. 
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𝛽𝑆,0 = [𝜇 +
1 − 𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

[
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
𝑏0 − 𝑢(𝑏0, 𝑠𝑟0)]

+ [
𝜇

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝑏0 − 𝑢(𝑏0, 𝑠𝑟0)]

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑏
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)
𝑏0

+ (𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑉𝑥

𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)2

𝑉0
𝑥 + (𝑢(𝑏0, 𝑠𝑟0) − 𝜇𝑏0)

𝜕𝑞(𝑏0, 𝑠𝑟0, 𝑉0
𝑥)

𝜕𝑠𝑟
𝑞(𝑏0, 𝑠𝑟0, 𝑉0

𝑥)2
𝑠𝑟0] 

and 

𝛽𝐶,0 = 𝜇 + 𝑢(𝑏0, 𝑠𝑟0) −
𝜕𝑢(𝑏0, 𝑠𝑟0)

𝜕𝑏
𝑏0 

which are clearly different. 




