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1. INTRODUCTION

Predicting the future is notoriously difficult, evenmore so during crises when the realizations of

economic variables are far from their average. In fact, econometric models are typically better

at explaining and predicting values close to the average, particularly so in the case of linear

models. Yet, reliable forecasts are particularly valuable during and after crisis time. Hence, the

econometric literature has proposed a variety of sophisticated nonlinear/time-varying models.

Examples include threshold and smooth transition models (see, e.g., Tong, 1990; Teräsvirta,

1994), Markov switching (MS, see, e.g., Hamilton, 1989) models, and double stochastic models

(see, e.g., Nyblom, 1989).1 While these are not without perils, in particular when used with

short samples, specifications in this spirit can yield some gains, see e.g., Ferrara et al. (2015).

The situation got evenworse during the Covid-19 period, withmanymacroeconomic time

series exhibiting unprecedented shifts. Even sophisticated and typicallywell performing econo-

metric models such as Bayesian vector autoregressions (BVARs) with stochastic volatility (SV),

and possibly time varying parameters (TVPs), had troubles in tracking the tremendous fall and

subsequent rebound in real activity and labormarket indicators (see Carriero et al., 202X, for the

US). This contributed to the spread of an additional level of sophistication in the specification

of econometric models for forecasting, with the adoption of a variety of machine learning (ML)

or ML-inspired methods.

Examples include Goulet Coulombe et al. (2021) who assess whether and to what extent

classical MLmodels can improve the forecasts, both in general and specifically during the onset

of the Covid-19 pandemic. They focus on the UK economy that at the same time was also

experiencing Brexit-related uncertainty. Huber et al. (2023) consider nowcasting GDP in the

largest euro area (EA) economies, by combining amixed frequencyVARwith BayesianAdditive

Regression Trees (BART). This extended the work of Huber and Rossini (2022) which was in

turn inspired by Chipman et al. (2010). Further generalizations in this spirit, and applications

to forecasting US variables are provided in Clark et al. (2023), which has a special focus on tail

events. Indeed, regression trees (and more generally, random forests, see Breiman, 2001) are

able to quickly adapt to extreme observations and to disentangle switches in the underlying

regimes. They forecast well a variety of economic variables, see Masini et al. (2023) for a survey

and Medeiros et al. (2021) for an application to forecasting US inflation.

1 Primiceri (2005) popularized the use of time-varying parameters and stochastic volatility in macroeconometrics.
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Another ML-inspired method is Gaussian process (GP) regression (see, Williams and

Rasmussen, 2006, for an overview). Borrowing ideas from the literature on Bayesian linear

VARs, Hauzenberger et al. (2021) assume, for each endogenous variable, a different nonlinear

relationship with its own lags and with the lags of all the other variables. This particular ap-

proach can be viewed as a nonparametric alternative to Minnesota-type shrinkage. GPs are

used to model nonlinearities in a flexible way, and have been found to yield some gains when

forecasting US variables in an economic context. They are also related to neural networks, as

they are universal approximators based on infinite mixtures of Gaussian distributions.2

Indeed another class of promisingML forecastingmodels are (classical or Bayesian) neural

networks (NN), see, e.g., Hornik et al. (1989),Gu et al. (2021),Goulet Coulombe (2022),Hauzen-

berger et al. (2022).3 Yet, NN are fairly different from the VARmodels that are the workhorse of

modern time series econometrics. Instead, BART and GP can be rather easily and efficiently ad-

apted to provide a nonlinear and nonparametric extension of VARmodels, see Clark et al. (2023)

andHauzenberger et al. (2021). Iteratedmulti-step ahead forecasts can be also computed, while

the direct approach is typically used in single equation NN models. For these reasons, and for

their good forecasting performance for economic and financial variables in previous studies, we

focus on BART and GP models in this chapter.

A point worth making is that the flexible modeling of the conditional mean in BART and

GP based specifications could make the error variances more stable than in linear models. On

the other hand, the nonlinearities captured by BART and GP could be mainly due to large real-

izations of the errors and/or outlying observations. For a discussion of discriminating signal

from noise during Covid-19 in BVARs estimated on US data, see Carriero et al. (202X). Hence,

we also assess the role of assuming heteroskedastic features about the errors. More specific-

ally, to address potentially time-varying variances in a flexible yet parsimonious manner, and to

simplify estimation of very large nonparametric models, we introduce a factor stochastic volat-

ility (FSV) structure on the multivariate errors. This makes equation-by-equation estimation

feasible — and thus enables modeling a moderate to large number of variables jointly.

Empirically, overall we find improvements in predictive accuracy for BART and GPs. Het-

eroskedasticity does not appear to be as important as in the linear case for the nonparametric

2 Specific choices of the kernels underlying Gaussian processes can produce a variety of neural network models, see
Novak et al. (2018) for details.

3 Further contributions to nonlinear and nonparametric times series analysis also make use of infinite mixtures, see
Hirano (2002), Kalli and Griffin (2018), Billio et al. (2019), Jin et al. (2022).
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implementations, and the size of the information set causes some differences in predictive per-

formance. Both BART and GP perform particularly well for short-run forecasts of unemploy-

ment, and longer-run predictions of inflation. Some additional gains are masked when con-

sidering only the average performance over the full holdout sample; there are several periods

when nonlinearities appear to be particularly useful. In fact, they help during recessions in

some important cases such as downside-risk to GDP and upside-risk to unemployment, and

the nonparametrics do well in predicting the recent surge of inflation.

The chapter is structured as follows. In Section 2 we describe model specification and

estimation, and relate our discussions to nested simpler variants such as the BVAR. Section 3

illustrates the approaches by means of simple univariate examples using US data for unem-

ployment, output and inflation. In Section 4 we apply the models for point, density and tail

forecasting EA and US variables. Section 5 summarizes salient points and concludes. Technical

details are gathered in an Appendix and additional empirical results are provided online as

supplementary material.

2. MULTIVARIATE NONPARAMETRIC MODELS

Let 𝒚𝑡 = (𝑦1𝑡 , . . . , 𝑦𝑛𝑡)′ be a standardized 𝑛 × 1 vector of endogenous variables, and 𝒙𝑡 =

(𝒚′
𝑡−1 , . . . , 𝒚

′
𝑡−𝑝)′ the 𝑘 × 1 vector of lagged endogenous variables with 𝑘 = 𝑛𝑝. We work with

general multivariate models of the form:

𝒚𝑡 = 𝐹(𝒙𝑡) + 𝝐𝑡 , (1)

where 𝐹(𝒙𝑡) = ( 𝑓1(𝒙𝑡), . . . , 𝑓𝑛(𝒙𝑡))′ collects a set of (possibly unknown) conditional mean func-

tions 𝑓𝑖(𝒙𝑡) : R𝑘 → R for 𝑖 = 1, . . . , 𝑛, such that 𝐹(𝒙𝑡) : R𝑘 → R𝑛 . We rely on methods that al-

low for order-invariant estimation of the multivariate model equation-by-equation, i.e., in most

cases, we assume the 𝑓𝑖(𝒙𝑡)’s to be conditionally independent across 𝑖. This provides substantial

computational gains and flexibility.

The competing model specifications will be distinguished with respect to how we treat

the function 𝐹(𝒙𝑡) and what we assume about the error term 𝝐𝑡 = (𝜖1𝑡 , . . . , 𝜖𝑛𝑡)′. In fact, the

reduced form errors reflect the unpredictable component within our model framework, and
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assumptions about their correlation structure play a key role with respect to efficient estimation

of multivariate nonparametric models.

2.1. Conditionally independent equations

Our implementation of the nonparametric conditional mean functions is based on imposing

structure equation-by-equation. So we first will discuss how to transform the VAR into a system

of (order-invariant) independent equations, conditional on auxiliary variables. In the spirit of

FSV models, we decompose the reduced form errors as:

𝝐𝑡 = 𝑳𝔉𝑡 + 𝜼𝑡 , (2)

where, 𝔉𝑡 = (𝔣1𝑡 , . . . , 𝔣𝑞𝑡)′ is a 𝑞 × 1 vector of common static factors linked to the observed resid-

uals via the 𝑛 × 𝑞 loadings matrix 𝑳, and 𝜼𝑡 = (𝜂1𝑡 , . . . , 𝜂𝑛𝑡)′ is an 𝑛 × 1-vector of idiosyncratic

shocks. In our baseline specification, we assume heteroskedastic factors and idiosyncratic in-

novations:

𝔉𝑡 ∼ 𝒩(0𝑞 ,𝛀𝑡), 𝜼𝑡 ∼ 𝒩(0𝑛 ,𝑯𝑡),

𝛀𝑡 = diag
(
exp(𝜔1𝑡), . . . , exp(𝜔𝑞𝑡)

)
, 𝑯𝑡 = diag

(
exp(ℎ1𝑡), . . . , exp(ℎ𝑛𝑡)

)
.

The covariance matrix is thus given by:

Var(𝝐𝑡) ≡ 𝚺𝑡 = 𝑳𝛀𝑡𝑳′ + 𝑯𝑡 ,

where cross-variable correlations are encoded exclusively in 𝑳, that is, joint dynamics are driven

by a small number of 𝑞 ≪ 𝑛 shocks; see Kastner and Huber (2020) for an early implementation

of FSV in the VAR context.4 Wewill assign independent Gaussian priors on the elements of the

loadings matrix, and equip these with a global-local shrinkage prior.

To see why this is useful from an algorithmic perspective, notice that 𝒚̃𝑡 ≡ 𝒚𝑡 − 𝑳𝔉𝑡 =

𝐹(𝒙𝑡) + 𝜼𝑡 , where 𝜼𝑡 are independent across equations due to the diagonal structure of 𝑯𝑡 . For

4 We always use a minimum number of 𝑞 = 2 factors irrespective of the size of the information set. Overfitting factor
models carry less of a penalty than underfitting ones, see Chan (2023). We thus set the number of factors to the
Ledermann bound, which is the largest positive solution 𝑞∗ of the equation (𝑛 − 𝑞∗)2 ≥ 𝑛 + 𝑞∗ and use a shrinkage
prior to regularize the parameter space to alleviate overfitting concerns.
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future reference, we also define a 𝑇 × 1-vector 𝒉𝑖 = (exp(ℎ𝑖1), . . . , exp(ℎ𝑖𝑇))′, which comprises

the variance process for equations 𝑖 = 1, . . . , 𝑛, stacked over time 𝑡 = 1, . . . , 𝑇.

2.2. Modeling the conditional mean

Constant and time-varying parameter vector autoregressions

For the constant and TVP case, we simply assume that 𝐹(𝒙𝑡) = 𝑨𝑡𝒙𝑡 is known to be a linear

function (conditional on 𝑡), such that Eq. (1) turns into:

𝒚𝑡 = 𝑨𝑡𝒙𝑡 + 𝝐𝑡 ,

where 𝑨𝑡 is an 𝑛 × 𝑘 matrix of time-varying autoregressive VAR coefficients. This specification

is referred to as the TVP-VAR, as popularized by Primiceri (2005). The BVAR is obtained by

assuming 𝑨𝑡 = 𝑨 to be the same for all 𝑡 = 1, . . . , 𝑇, i.e., a constant set of VAR coefficients.

Intercept terms, time trends, latent/observed factors or additional exogenous covariates can be

introduced by augmenting the vector 𝒙𝑡 accordingly. For instance, in our empirical work we

always include an intercept term for the BVAR and TVP-VAR.

Priors. The linear model may be estimated via Bayesian methods by specifying a Gaussian

prior on each coefficient of the matrix 𝑨. A popular choice in this case is to regularize the

parameter space via shrinkage priors, such as the Minnesota prior or global-local priors. We

opt for the latter, and assume a horseshoe prior (HS, see Carvalho et al., 2010, and Appendix A)

on these coefficients.5

For the TVP case, we stack the coefficients column-wise in a vector 𝒂𝑡 = vec(𝑨′
𝑡) and

assume a random walk state equation:

𝒂𝑡 = 𝒂𝑡−1 +𝚯1/2𝜺𝑡 , 𝜺𝑡 ∼ 𝒩(0𝑛𝑘 , 𝑰𝑛𝑘), 𝚯1/2 = diag
(
𝜃1/2
1 , . . . , 𝜃1/2

𝑛𝑘

)
.

To impose shrinkage, we rewrite this model in its non-centered parameterization which moves

the square root of the state innovation variances in the diagonal matrix 𝚯 into the measure-

ment equation (for details, see Frühwirth-Schnatter and Wagner, 2010; Bitto and Frühwirth-

Schnatter, 2019). Let 𝒂𝑖𝑡 = 𝑨′
[𝑖•]𝑡 collect the parameters of the 𝑖th VAR equation and 𝜽1/2

𝑖
is the

5 Any prior which is Gaussian at the lowest level of the hierarchy can be (and many have been) used in this context,
andwepick the horseshoe for its solid performance inmany applications. For an overviewof global-local shrinkage
priors, see Cadonna et al. (2020); an empirical comparison for VARs is provided by Cross et al. (2020).
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𝑘-vector subsetting the associated state innovations on the diagonal of 𝚯1/2. Using the trans-

formation 𝒂𝑖𝑡 = 𝒂𝑖 + diag(𝜽1/2
𝑖

)𝒂̃𝑖𝑡 , which splits the TVPs into a constant initial state and time-

varying part, we may write:

𝑦𝑖𝑡 = 𝒙′𝑡

(
𝒂𝑖 + diag

(
𝜽1/2
𝑖

)
𝒂̃𝑖𝑡

)
+ 𝜖𝑖𝑡 , 𝒂̃𝑖𝑡 ∼ 𝒩(𝒂̃𝑖𝑡−1 , 𝑰𝑘), 𝒂̃𝑖0 = 0𝑘 ,

which opens up various avenues for efficient Bayesian estimation. For this purpose, we assume

a HS prior on the constant part of the parameters, 𝒂𝑖 , and the square root of the state innovation

variances, 𝜽1/2
𝑖

for each equation 𝑖 = 1, . . . , 𝑛, centering the priormodel on a constant parameter

variant to avoid overfitting (a similar specification has been used by Huber et al., 2021).6

This establishes a specific state space representation, and combining the likelihood with

suitable priors allows for devising a straightforwardGibbs sampling algorithm augmentedwith

a forward-filtering backward-sampling step for drawing the TVPs if applicable. The functional

relationship between the 𝒚𝑡 ’s and the 𝒙𝑡 ’s, may change over time, but conditional on each point

in time, it is assumed to be known and linear. We break this assumption next.

Bayesian Additive Regression Trees

One of the goals of this chapter is to discuss and reviewmethods capable of inferring unknown

(and potentially nonlinear) conditional mean functions without imposing a large number of

perhaps restrictive assumptions. The first approach we consider in this regard is based on re-

gression trees. In particular, we use Bayesian Additive Regression Trees, often referred to by

the acronym BART, as developed by Chipman et al. (2010). In essence, regression trees are step-

functions which partition the input space provided by 𝒙𝑡 . The terminal node parameters that

are associated with these partitions (the “leaves” of the tree) provide the fitted values for the

output variable values.

When using BART, we approximate the unknown functions 𝑓𝑖(𝒙𝑡) equation-by-equation

using a sum of individual regression tree functions ℓ𝑖𝑠(𝒙𝑡 |𝒯𝑖𝑠 , 𝝁𝑖𝑠):

𝑓𝑖(𝒙𝑡) ≈
𝑆∑

𝑠=1
ℓ𝑖𝑠(𝒙𝑡 |𝒯𝑖𝑠 , 𝝁𝑖𝑠).

6 Consider the conditional prior for the 𝑗 = 1, . . . , 𝑛𝑘, coefficient at time 𝑡, 𝑝(𝑎 𝑗𝑡 |𝑎 𝑗𝑡−1 ,Θ𝑗) ∼ 𝒩(𝑎 𝑗𝑡−1 ,Θ𝑗). For large
Θ𝑗 , it allows for large shifts, while ifΘ𝑗 → 0, this specification collapses to a constant parametermodel. In addition,
shrinkage is imposed on the constant part (initial state) of the parameters, similar to the BVAR without TVPs.
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Here, 𝑆 denotes the number of trees, 𝒯𝑖𝑠 are tree structures, and 𝝁𝑖𝑠 are tree-specific terminal

node parameters. Rather than having a single complex tree, the idea of BART is to have many

simplistic trees. In this respect, BART is in fact related to the popular “classical” ML approach

Random Forest. Each of the trees will be pruned heavily via our priors, such that individually

they only explain a fraction of the variance of the dependent variable. But by having a combin-

ation of many simplistic trees, we are able to approximate virtually any nonlinear relationship

between the dependent variable and the predictors.

Priors. BART uses many trees and we have many predictors, which requires introducing some

sort of regularization. In our algorithm, the splitting variables are estimated alongside the

thresholds and the terminal node parameters, on which we specify priors. In fact, we do not

specify priors directly on the trees, but rather in the context of a tree-generating stochastic pro-

cess which features three aspects. Let 𝛼 ∈ (0, 1) and 𝛽 ∈ R+. The first ingredient is to define

the probability of a node at depth 𝑑 = 1, . . . , being nonterminal, which we set to 𝛼/(1 + 𝑑)𝛽.

This implies that the probability of having additional child nodes decreases the more complex

(or deep, encoded in 𝑑) the respective tree becomes. Second, we use a discrete uniform prior

over the splitting variables, which implies that each of them is equally likely a priori to be selec-

ted as determining partitions of the input space. Third, all thresholds within the splitting rules

are assigned a uniform prior over the range of the relevant splitting variables. These are the

assumptions about 𝒯𝑖𝑠 .

Next, we define the prior on the terminal node parameters, which act as the fitted val-

ues conditional on the partitioned input space. Let #TN𝑖𝑠 denote the number of terminal node

parameters of tree 𝑠. Here, we use independent Gaussian priors that are symmetric across trees,

𝜇𝑖𝑠 ,𝑙 ∼ 𝒩(0, 𝑣𝑖), for 𝑙 = 1, . . . , #TN𝑖𝑠 , and identical for all terminal nodes in equation 𝑖. The prior

variance is chosen in a data-driven way:

√
𝑣𝑖 =

max(𝒚𝑖) −min(𝒚𝑖)
2𝛾

√
𝑆

,

which puts most prior mass on the observed range of values, where 𝒚𝑖 = (𝑦𝑖1 , . . . , 𝑦𝑖𝑇)′.

Regularization of the trees arises from two main sources. First, it is due to how the prob-

ability of nodes being nonterminal is specified. We use the default values 𝛼 = 0.95 and 𝛽 = 2

taken from Chipman et al. (2010). These choices work well across a large number of datasets

(as demonstrated in the original paper), and favor simplistic over complicated trees (the prior
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probability of 2 to 4 terminal nodes is 0.92). Second, the tightness of the prior on the terminal

node parameters increases with 𝑆. That is, shrinkage on the output values becomes tighter the

more trees there are. It is worth noting, however, that these priors do not rule out larger and

more complex trees in case they are required. We set the number of trees to 𝑆 = 250.7

Algorithmically, it suffices to note here that the trees 𝒯𝑖𝑠 are drawn marginally of the ter-

minal node parameters, using a Metropolis-Hastings algorithm with a transition distribution

defined by four distinct probabilistic moves: growing a terminal node, Pr(grow) = 0.25; prun-

ing a pair of terminal nodes, Pr(prune) = 0.25; change a splitting rule, Pr(change) = 0.4; swap

parent and child node, Pr(swap) = 0.1.

Example. To gain intuition how this procedure approximates the unknown functions, consider a

single tree in stacked notation for a scalar dependent variable 𝒚 = (𝑦1 , . . . , 𝑦𝑇)′, a single predictor

𝒙 = (𝑥1 , . . . , 𝑥𝑇)′ and shocks 𝝐 = (𝜖1 , . . . , 𝜖𝑇)′:

𝒚 = ℓ (𝒙 |𝒯 , 𝝁) + 𝝐, 𝐸(𝒚 |𝒙) = ℓ (𝒙 |𝒯 , 𝝁) =
#TN∑
𝑠=1

𝜇𝑠I(𝒙 ∈ 𝒮𝑠).

The tree is fully defined by sets 𝒯 = {𝒮𝑠}#TN𝑠=1 , formed by partitioning 𝒙 via splitting rules:

{𝒙 ≤ 𝑐} or {𝒙 > 𝑐} with associated number of #TN terminal nodes 𝜇𝑠 . This simplistic example

is visualized in Figure 1. Here we show the case of a single predictor, where the splitting rules

amount to splitting the real line into non-overlapping intervals that define the sets 𝒮𝑠 . With

two predictors, it produces partitioned areas on R2; for three predictors cuboids on R3, and so

on. Moving to BART from this trivial example is as simple as adding an additional summation

operator in front of the tree function, and introducing several additional indexes. And this

consideration already hints at the increased flexibility that arises from having many rather than

a single tree.

The tree in Figure 1 can be interpreted as follows. At the initial split, the rule is 𝑥 < −0.06.

In case it is fulfilled, one moves down the left-hand side, otherwise right. The next (non-

terminal) splitting rule is 𝑥 < −0.68; if it is fulfilled, one moves down left and reaches another

rule. Otherwise, one moves right and reaches a terminal node containing 9% of the observa-

tions, with associated parameter 𝜇𝑠 = −0.85. This value represents the assigned output, or

7 It is worth mentioning that differences stemming from varying the number of trees are muted as long as this
number is not set too small. In earlier related research, we found predictive performance typically to increase up
to 100 or 150 trees. It subsequently plateaus when using even more trees — so our choice strikes a balance between
having too few trees, and using needlessly many of them.
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Fig. 1: How a regression tree partitions the (input) parameter space. Based on a single tree, i.e.,
𝑆 = 1. The left panel shows the tree, the right panel the conditional mean function.

BART, S=1 BART, S=250

−2 0 2 −2 0 2

−2

0

2

x

y,
 f(

x)

Fig. 2: Varying the number of trees. The blue shaded are is the 99% posterior credible set of the
estimate, the black line indicates the true conditional mean function.

fitted value. The resulting piece-wise linear partitions of the input space give rise to the con-

ditional mean function shown in the right panel. Rather than a single draw, however, Figure 2

shows the posterior distribution of BART with a single tree (𝑆 = 1), and our default specifica-

tion with many trees (𝑆 = 250). Exploring the posterior this showcases that BART is capable of

approximating virtually any functional relationship via using a sum of trees.

Gaussian process regression

The second approach to nonparametric inference is based on GP regression, see Williams and

Rasmussen (2006) for a textbook treatment: “aGP is defined as a collection of randomvariables,

any finite number of which have a joint Gaussian distribution.” In essence, the idea in this

context is to place priors directly on the conditional mean function. For our purposes, we set
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the mean of the GP itself to zero, such that it is exclusively specified by its variance:

𝑓𝑖(𝒙𝑡) ∼ 𝒢𝒫 (0,𝒦𝝑𝑖
(𝒙𝑡 , 𝒙𝑡)) , (3)

where 𝒦𝝑𝑖
denotes a suitable covariance function. We will work with a simple distance-based

covariance function, reflecting a specific notion of distance between periods of the input space

across 𝑡 = 1, . . . , 𝑇; in general, we have Cov ( 𝑓𝑖(𝒙𝑡), 𝑓𝑖(𝒙𝑡)) = 𝒦𝝑𝑖 (𝒙𝑡 , 𝒙𝑡), where 𝒦𝝑𝑖 (𝒙𝑡 , 𝒙𝑡) is

referred to as a kernel which depends on a set of tuning parameters 𝝑𝑖 . Many such kernels are

available, which allows to express different beliefs about the respective functional relationships.

We discuss a specific kernel to be used in our applications below, but note that the framework

generalizes trivially to alternative choices.

Define𝒦𝝑𝑖
(𝑿 ,𝑿 ′)with typical (𝑡 , 𝑡) element𝒦𝝑𝑖

(𝒙𝑡 , 𝒙𝑡), i.e., it captures the covariances of

the function values across all input vector combinations. Further, we stack 𝒚̃𝑖 = (𝑦̃𝑖1 , . . . , 𝑦̃𝑖𝑇)′,

𝑿 = (𝒙1 , . . . , 𝒙𝑇)′ and 𝒇𝑖 = ( 𝑓𝑖(𝒙1), . . . , 𝑓𝑖(𝒙𝑇))′, and obtain:

𝒇𝑖 ∼ 𝒩 (0𝑇 ,𝒦𝝑𝑖
(𝑿 ,𝑿 ′)) , 𝒚̃𝑖 ∼ 𝒩

(
0𝑇 ,𝒦𝝑𝑖

(𝑿 ,𝑿 ′) + diag(𝒉𝑖)
)
.

In other words, Eq. (3) transforms into a multivariate Gaussian distribution when condition-

ing on the data. Note that the representation for 𝒚̃𝑖 above is conditional on 𝑳𝔉𝑡 for notational

simplicity, resulting in a diagonal white noise component with variances over time stored in 𝒉𝑖 .

Intuitively, the distance-based covariances capture similarity of observations in the input space

that will transmit to similarities in the output space of functional values.

Priors. The specific kernel we choose is the squared-exponential kernel. This is a popular

choice since it directly relates to a Bayesian linear regression model with infinitely many basis

functions, among several other useful features and properties. Let us first define our notion of

distance, with 𝑑𝑡𝑡 = | |𝒙𝑡 − 𝒙𝑡 | |2 capturing the Euclidean norm between two different periods in

the input space.

The squared-exponential kernel is defined as:

𝒦𝝑𝑖 (𝒙𝑡 , 𝒙𝑡) = 𝜉𝑖 × exp
(
− 𝑙𝑖𝑑𝑡𝑡

2

)
,
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with two hyperparameters collected in 𝝑𝑖 = (𝜉𝑖 , 𝑙𝑖)′. The parameter 𝜉𝑖 regulates the uncondi-

tional variance of the prior, since for 𝒙𝑡 = 𝒙𝑡 which yields 𝑑𝑡𝑡 = 0 one obtains 𝒦𝝑𝑖 (𝒙𝑡 , 𝒙𝑡) = 𝜉𝑖 .

The parameter 𝑙𝑖 is referred to as the inverse length-scale, which in simple terms governs the

sensitivity of the output values to varying distance in the input space.

The parameters in 𝝑𝑖 may be fixed and treated as tuning parameters to be optimized via

cross-validation. We take a different route and assign independent Gamma priors, and infer

them alongside all other parameters when running our algorithm.
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Fig. 3: Visualizing the GP prior and resulting posterior. The blue shaded area is the 99% pos-
terior credible set of the estimate, the black line indicates the true conditional mean function.
The grey shaded area refers to the unconditional variance 𝜉 of the GP prior; grey lines refer to
five random draws from this prior varying the inverse length scale 𝑙.

Example. Figure 3 provides a visualization of our GP prior, varying the inverse length-scale 𝑙𝑖

and fixing 𝜉𝑖 = 1. The upper panels indicate the implied priors, while the bottom panels show

the resulting posterior distribution. The grey shaded area refers to 95% prior mass over the

possible space of functions, and is the same for both cases of the inverse length-scale. To visu-

alize the role of the inverse length-scale, we draw five realizations from these priors (dark grey

lines). On the left-hand side, we have a short inverse length-scale (and conversely, a long length-

scale). This results in very slow-moving prior functions. In other words, a substantial shift in

the input space is necessary to produce a noteworthy change in the output space. Assessing the

associated posterior indicates that a very short inverse length-scale produces an almost linear
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relationship. By contrast, a long inverse length-scale allows for rapid changes of the function

values. This is also reflected in the posterior, which exhibits some overfitting.

2.3. Modeling the conditional variances

As stated above, we rely on a FSVmodel for the reduced form errors due to a number of compu-

tational and statistical advantages, alongside its established solid empirical performance (see,

e.g., Chan, 2023).8 So farwe have not discussed specifics about howwemodel the drifting volat-

ilities of the factors and the idiosyncratic errors. The natural logarithm of the diagonal elements

of the respective covariance matrices are assumed to follow independent AR(1) processes:

ℎ𝑖𝑡 = 𝜇𝑖ℎ + 𝜙𝑖ℎ(ℎ𝑖𝑡−1 − 𝜇𝑖ℎ) + 𝜍𝑖ℎ𝜁𝑖𝑡 ,ℎ , 𝜁𝑖𝑡 ,ℎ ∼ 𝒩(0, 1), for 𝑖 = 1, . . . , 𝑛,

𝜔 𝑗𝑡 = 𝜙 𝑗𝜔𝜔 𝑗𝑡−1 + 𝜍 𝑗𝜔𝜁 𝑗𝑡 ,𝜔 , 𝜁 𝑗𝑡 ,𝜔 ∼ 𝒩(0, 1), for 𝑗 = 1, . . . , 𝑞,

Note that we normalize the unconditional mean of the factor-specific volatility processes to zero

to pin down the scale of the factors. We refer to this heteroskedastic normal specification of the

errors as SV.9 In homoskedastic specifications, we assume that 𝜔 𝑗𝑡 = 0 for 𝑗 = 1, . . . , 𝑞, and

ℎ𝑖𝑡 = ℎ𝑖 for 𝑖 = 1, . . . , 𝑛, and all 𝑡 = 1, . . . , 𝑇. We assign weakly informative independent

inverse gamma priors on exp(ℎ𝑖), and indicate this specification as hom.

For the BVAR, to reflect large variance shocks such as during the Covid-19 pandemic, we

also consider the following alternative specification using 𝑡-distributed idiosyncratic shocks:

𝜂𝑖𝑡 ∼ 𝑡𝜈𝑖 (0, exp(ℎ𝑖𝑡)),

where 𝜈𝑖 refers to the degrees of freedom which we estimate under a uniform prior. This 𝑡-

distributed error specification is referred to as SV-t and assumes the same independent AR(1)

processes as written above on ℎ𝑖𝑡 . Rewriting this distribution as a scale mixture allows for a

representation similar to Carriero et al. (202X). 10

8 In this framework, the sign of the factors is not econometrically identified. This poses no further issues when
interest is on forecasting, since we merely use the FSV model as a tool to estimate the full covariance matrix of
the system. Several avenues to achieve econometric identification are available if necessary (see Aguilar andWest,
2000; Chan et al., 2022).

9 Note that nonparametric methods for estimating variances are available. We refrain from including such ap-
proaches in this chapter, but note that our baseline framework could trivially be extended to also allow for non-
parametric treatments of the conditional variance, see, e.g., Clark et al. (2023).

10Empirically, we considered this specification of the errors also for BART and GP but got similar results to the case
of normal errors.
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2.4. Estimation and prediction

We use a Bayesian approach for posterior and predictive inference. In particular, our basic

setup allows for a comparatively straightforward sampling algorithm. Our implementation

uses mostly conditional Gibbs sampling steps, augmented with occasional MH updates when

the conditional posterior distributions are not available in closed form. For the SV processes

and TVPs, we rely on standard filtering and smoothing methods for state space models (see

Chan et al., 2020, for a textbook treatment). The codes are implemented in the software R.

Details about priors, posteriors and the implementation of the algorithm are provided in

Appendix A. In the following, we summarize key steps and discuss how to compute higher-

order forecasts.

Sampling algorithm. The key aspect of the FSVmodel from an algorithmic perspective is that

we can break up the full multivariate system into independent equations. Recall that we earlier

defined (𝒚𝑡 − 𝑳𝔉𝑡) ≡ 𝒚̃𝑡 = 𝐹(𝒙𝑡) + 𝜼𝑡 , where 𝜼𝑡 has a diagonal covariance matrix. Conditional

on 𝑳𝔉𝑡 , we thus may work with the univariate equation 𝑦̃𝑖𝑡 = 𝑓𝑖(𝒙𝑡) + 𝜂𝑖𝑡 and update the 𝑓𝑖(𝒙𝑡)’s

equation-by-equation for 𝑖 = 1, . . . , 𝑛. This yields a draw for the full vector 𝐹(𝒙𝑡), which sub-

sequently can be used to update any hyperparameters related to the conditional mean (e.g., the

shrinkage parameters for the BVAR, or the hyperparameters of the kernel).

Conversely, notice that (𝒚𝑡 − 𝐹(𝒙𝑡)) ≡ 𝝐𝑡 = 𝑳𝔉𝑡 + 𝜼𝑡 . This auxiliary representation is a

simple linear Gaussian regressionmodel with (potentially) heteroskedastic errors. Treating the

latent factors 𝔉𝑡 as conditionally observed implies that the loadings 𝑳 can be drawn variable-

by-variable from their Gaussian posterior. Having updated the loadings, one may stack the

reduced form errors and update the full history of the factors 𝔉𝑡 jointly in one block.

Depending on the respective applicable assumptions about the factor and idiosyncratic

volatilities, these can be sampled factor-by-factor and variable-by-variable, using either the text-

book quantities for homoskedastic errors, or a standard algorithm for sampling stochastic volat-

ilities.

Predictive Simulation. For the BVAR and TVP-VAR versions of our models, the moments

of the ℎ-step ahead predictive distribution are available in closed-form, and can be derived by

iterating the endogenous vector and covariance matrix forward in time. This is not the case for

the nonparametric approaches due to the innate nonlinearity, but wemay use simulation-based

methods to produce a Monte Carlo sample from the predictive distribution.
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To set up this procedure, let 𝒙𝑇 = (𝒚′
𝑇
, . . . , 𝒚′

𝑇−𝑝+1)′ denote the predictors at the end of

the sample. Also note that 𝝐𝑇+1 ∼ 𝒩(0𝑛 , 𝑳𝛀𝑇+1𝑳′ + 𝑯𝑇+1), where the covariance matrices can

be updated by iterating forward their independent AR(1) state equations. We denote a draw

from these errors with 𝝐̃𝑇+1. Depending on the conditional mean function, we obtain either the

predictive location 𝑦̃𝑖𝑇+1 = 𝑓𝑖(𝒙𝑇) or distribution from which we can sample. These equation-

specific predictive draws are collected in 𝒚̃𝑇+1 = (𝑦̃1𝑇+1 , . . . , 𝑦̃𝑛𝑇+1)′, which in conjunction with

the errors can be used to form a draw 𝒚̂𝑇+1 = 𝒚̃𝑇+1 + 𝝐̃𝑇+1 from the multivariate system. For the

two-step ahead prediction, we condition on this draw such that 𝒙𝑇+1 = (𝒚̂′
𝑇+1 , 𝒚

′
𝑇
, . . . , 𝒚′

𝑇−𝑝+2)′

configures the input space, which allows to obtain 𝒚̂𝑇+2 = 𝒚̃𝑇+2 + 𝝐̃𝑇+2.

Higher-order forecasts, 𝒚̂𝑇+ℎ , for ℎ = 1, 2, . . . , are obtained analogously by iteratively sim-

ulating forward and re-configuring the input vector at each additional horizon. Applying this

procedure for each sweep of the algorithm integrates out all sources of predictive uncertainty.

3. ILLUSTRATIONS REVISITING OKUN’S LAW AND THE PHILLIPS CURVE

Before proceeding with the multivariate forecasting models, we illustrate the several types of

nonlinearities that may arise from our nonparametric approaches using simplified examples.

We revisit two prominent (single-equation) macroeconomic classics: Okun’s Law (OL) and

two variants of the Phillips Curve (PC).11 In particular, we intend to showcase commonalities

and differences between BART and GP, since the two take very different approaches to achieve

a potentially nonlinear relationship between a dependent variable and one or more predictors.

As a rough gauge of goodness of fit, we compute the coefficient of determination (𝑅2) and the

deviance information criterion (DIC). They are displayed in Table 1.

For these illustrations, we use US data for the unemployment rate 𝑢𝑡 , its natural rate 𝑢∗
𝑡 ,

inflation 𝜋𝑡 , inflation expectations E𝑡(𝜋𝑡+1), and the logs of real GDP 𝑦𝑡 and potential output 𝑦∗𝑡 .

These measures allow us to define the unemployment gap 𝑢
𝑔

𝑡 = 𝑢𝑡 −𝑢∗
𝑡 and the output gap 𝑦

𝑔

𝑡 =

𝑦𝑡−𝑦∗𝑡 . The data are quarterly and taken from the Real-TimeDataset forMacroeconomists (GDP,

unemployment and inflation), the Survey of Professional Forecasters (inflation expectations)

and FRED (natural rate of unemployment and potential output).

11Note that the purpose of these examples is purely to visualize how the nonparametric approaches fit data, and we
make no claim of “causal” or structural identification. This would require more intricate econometric procedures
on top of the nonparametric approaches.
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Table 1: Goodness of fit for each illustrative example across model specifications.

   75.8    80.8    78.0    77.2   77.2
231.5 223.1 243.8 232.4232.6

   80.8
223.1

    3.9    14.2     6.0     1.6    1.7
393.8 372.5 401.9 395.8397.2

   14.2
372.5

   28.8    40.8    33.2   26.9
326.9 292.0 355.5342.4

   40.8
292.0

OL PC1 PC2

BLR BART GP(e) GP(f)
l = 1

GP(f)
l = 0.1

BLR BART GP(e) GP(f)
l = 1

GP(f)
l = 0.1

BLR BART GP(e) GP(f)
l = 1

DIC
R2

Note: Coefficient of determination 𝑅2 and deviance information criterion (DIC) for Okun’s law (OL) and the two
Phillips curves (PC). Bayesian linear regression (BLR), Bayesian additive regression trees (BART) and Gaussian
Process (GP). The letter in parentheses for GP refers to whether the inverse length-scale 𝑙 is fixed (f) to the indicated
value, or estimated (e).

We consider three distinct specifications. The first two, OL and PC1, are bivariate nonlinear

regressions, allowing for comparatively straightforward visualizations. The third, PC2, serves to

illustrate a multiple nonlinear regression; it nests PC1 in the case of expected inflation entering

linearly with a coefficient of 1:

𝑢
𝑔

𝑡 = 𝑓 (𝑦𝑔

𝑡 ) + 𝜖𝑡 , (OL)

𝜋𝑡 − E𝑡(𝜋𝑡+1) = 𝑓 (𝑢𝑔

𝑡 ) + 𝜖𝑡 , (PC1)

𝜋𝑡 = 𝑓 (E𝑡(𝜋𝑡+1), 𝑢𝑔

𝑡 ) + 𝜖𝑡 . (PC2)

All three specifications are estimated with SV. We normalize each variable prior to estimation

such that the charts can be interpreted like standardized regression coefficients. Figures 4 and

5 show the function values when fitting the estimated relationships over a grid of all possible

combinations of the input variables. That is, these charts are closely related to so-called partial

dependence plots, a tool designed to ease interpretation of the output of black-box machine

learning methods.12

We start with OL in the upper panels. The first chart on the far left indicates the Bayesian

linear regression (BLR) model; it estimates a straight line with tight credible sets. By contrast,

when the function is unknown, BART and GP exhibit wider credible sets. BART and the GP

variants (𝑙 = 0.1 in red, 𝑙 = 1 in blue, estimated 𝑙 in green) agree on the shape of the function,

which somewhat flattens for large positive values of the output gap. There are some (barely

significant) differences for very negative values among the nonparametrics. A further key dif-

ference between them arises from the different assumptions about how to estimate the condi-

tional mean function; clearly, the GP variants are smooth, whereas BART results in somewhat

12For a textbook review of such tools and devices, see e.g., Hastie et al. (2009).
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Fig. 4: Conditional mean functions for OL (upper panels) and PC1 (lower panels). Bayesian lin-
ear regression (BLR), Bayesian additive regression trees (BART, 𝑆 = 250) and Gaussian process
(GP, 𝜉 = 1; 𝑙 = 0.1 in red, 𝑙 = 1 in blue, estimated 𝑙 in green). Points mark observations.

rougher movements and piece-wise almost constant fitted values. However, linearity appears

to be a reasonable approximation. This is also evident when comparing the estimated inverse

length-scale to the fixed length-scale versions: a comparatively small estimate for 𝑙 results, sug-

gesting a very slow-moving conditional mean function.

A different picture emerges for PC1, in the lower panels of Figure 4. Again, by construc-

tion, BLR shows a linear, weakly negative association between the inflation differential and the

unemployment gap. Prominent nonlinearities are visible when the conditional mean function

is approximated with BART. These estimates more or less coincide with the looser of the two

GP(f) specifications. The small inverse length-scale case (in red), on the other hand, results

in an estimate which is rather similar to the linear one, as is the case for the estimated version

(in green). Overall, this procedure detects a rather flat PC over most of the range of the unem-

ployment gap, and a somewhat more negative slope for high values. A particularly interesting

finding appears for the BART case. Zooming into some of the partitions of the input space —

e.g., 𝑢𝑔

𝑡 in the intervals (−1.2,−0.8), (−0.2, 0.5), or (1.0, 1.5)—points towards piece-wise approx-

imately linear PCs, shifted conditional on the magnitude of the unemployment gap.
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Fig. 5: Posterior surface (upper panels) and marginal conditional mean functions (lower pan-
els) for PC2. Bayesian linear regression (BLR), Bayesian additive regression trees (BART,
𝑆 = 250) and the Gaussian process (GP, 𝜉 = 1, 𝑙 = 1 fixed or 𝑙 estimated).

Finally, we turn to the more sophisticated case of PC2, with two right-hand side variables

which adds a dimension to our estimates of the conditional mean function. The posteriors

are visualized in Figure 5 (upper panels), with the multiple BLR now by construction fitting

a plane, and more complex surfaces arising from BART and GP. The lower panels condition on

various levels of expected inflation, indicated using the color scale ranging from red (low) to

blue (high). The black line with associated grey shaded area refers to the posterior median and

68 percent credible set averaging across all input combinations.13

The findings from PC1 generalize to this case; comparing the lower panels of Figure 5 to the

lower panels of Figure 4, the estimated marginal functional relationship is virtually identical.

However, adding potential nonlinearities via using inflation expectations as an additional co-

variate (rather than fixing its linear coefficient to 1 as in the PC1 example) results in a more

nuanced and potentially heterogeneous estimate of the PC. This is also reflected in more favor-

able measures of fit for PC2 over PC1. Abstracting from the location shift, varying magnitudes

of inflation expectations change the shape of the PC, particularly in the case of GP(f), and to a

lesser extent, also for BART and GP(e). This finding is also clearly visible in the upper panels,

13In principle, such analyses could also be conducted for the multivariate (higher-dimensional) case. However, it
is worth mentioning that adding predictors (let alone additional equations in a multivariate system) increases
computational complexity significantly, and producing such charts is computationally prohibitive.
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with more red in the top right quadrant of the BART and GP charts when compared to BLR.

Again, it is worth noting that BART appears to produce a slightly more noisy fit; but on aver-

age, the two nonparametric methods tend to agree, at least qualitatively, about the shape of the

nonlinear relationship. BART is often close to a loose GP prior.

Considering the measures of fit provided in Table 1, it is worth mentioning that BART

consistently produces the highest 𝑅2 and lowest DIC. GP(e) is usually rather close to GP(f)

with 𝑙 = 0.1, and BLR indicates competitivemetrics in all cases, again pointing towards linearity

being a good approximation. How can these patterns be explained? First, note that theDIC is an

imperfect in-sample measure of model fit, and may in fact disproportionally reward overfitting

models. In light of the high 𝑅2 value and from eyeballing the charts, this is likely what happens.

Second, a high in-sample𝑅2 is not necessarily indicative of good predictive performance. In fact,

this is rarely the case: high in-sample 𝑅2 often coincides with low out-of-sample 𝑅2, pointing

towards overfitting issues. Good predictive performance in spite of in-sample overfitting is a

somewhat unique feature of particular versions of regression trees (see, e.g., the discussion in

Goulet Coulombe, 2020).

Summarizing, this simplistic illustration provides two lessons (we again note that these

in-sample results must be viewed and interpreted with caution). First, linear models are sens-

ible choices in many cases, at least for the examples discussed above. Second, nonparametric

approaches may discover intricate and useful nonlinearities, but depending on hyperparameter

choices, they may also overfit the data. Next, we turn to out-of-sample predictive inference, a

more natural and informative means of model comparison.

4. FORECASTS FOR THE EA AND THE US

4.1. Data and forecast designs

Euro Area. For the EA forecast exercise, we rely on the real-time dataset used in Banbura et al.

(2021). The history of vintages starts in 2001Q1 and ends in 2021Q4. Since the final vintage is

comprised of data up to 2021Q3, this results in a maximum holdout sample from 2001Q2 until

2021Q3 (we use the final available vintage for evaluating our real-time forecasts) for one-step-

ahead forecasts. For ℎ-step-ahead forecasts, the holdout (evaluation period) shortens by the

initial ℎ quarters due to having a fixed date/vintage as our initial training sample. All series

start in 1980Q2 and we use 𝑝 = 4 lags with the small and medium information sets. We ac-
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count for ragged edges by imputing the missing values from their joint multivariate conditional

distribution online within our algorithm.

United States. An often used dataset for the purpose of evaluating competing forecast mod-

els, particularly in multivariate time series analysis, is FRED-QD, which was compiled and de-

scribed by McCracken and Ng (2020). We consider this dataset in addition to the EA for two

reasons. First, to also employ a well-known dataset, and to see whether lessons from the EA

carry over to the US. Second, to have a longer training sample and somewhat larger information

set for themedium-sized specifications. Here, we adopt a pseudo out-of-sample forecast design

using an expanding window. The initial training sample ranges from 1959Q2 to 1984Q4. The

final available observation is 2022Q4, which implies that our forecast evaluation period ranges

from 1985Q1 until that quarter. We again use 𝑝 = 4 lags with small and medium information

sets.

Although we use differently sized information sets (Small and Medium), we evaluate the

forecast performance for three focus variables. In particular, we investigate the predictive per-

formance of our competing models for real GDP growth, headline inflation and the change in

unemployment rates. The full dataset for the EA and the US are summarized in Table 2.

4.2. Competing models and predictive losses

The models are differentiated mainly with respect to how the conditional mean functions 𝐹(𝒙𝑡)

are estimated. Here, we consider the BVAR, TVP-VAR, BART and GP as potential variants.

Moreover, we consider various assumptions about the errors. In particular, we have homoske-

dastic (labeled hom) and SV factors and idiosyncratic shocks for all versions of the conditional

mean. For the BVAR, we also consider 𝑡-distributed errors (labeled SV-t). Third, we estimate

all models using two differently sized information sets, a small one with just the target variables

plus a short-term interest rate, and a medium-sized set with 14 (EA) and 19 (US) series.

Due to the practical relevance, we provide an overview of estimation times in Table 3. The

gray shaded cell displays seconds per 1000 predictive draws, and all other models are shown

as ratios to this benchmark which is the small BVAR with homoskedastic errors. The indicated

values are averages over the holdout, to also reflect the effect of an increasing number of training

observations. The forecast exercise was run on a high performance computing cluster with

an Intel E5-2650v3 2.3 GHz processor and 256GB memory. For instance, in the case of the
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Table 2: Datasets, abbreviations, transformation codes and variable inclusion.
Euro area Code Transform S M

Real Gross Domestic Product YER 100 · Δ log(𝑥) ✓ ✓
Harmonized Index of Consumer Prices HICSA 100 · Δ log(𝑥) ✓ ✓
Unemployment Rate URX Δ𝑥 ✓ ✓
Short-term interest rate STN Δ𝑥 ✓ ✓
Private consumption, real PCR 100 · Δ log(𝑥) ✓
Total investment, real ITR 100 · Δ log(𝑥) ✓
GDP deflator YED 100 · Δ log(𝑥) ✓
HICP excluding energy and food HEFSA 100 · Δ log(𝑥) ✓
Long-term interest rate LTN Δ𝑥 ✓
Total employment LNN 100 · Δ log(𝑥) ✓
Compensation per employee CEX 100 · Δ log(𝑥) ✓
ESI ESI 100 · Δ log(𝑥) ✓
Price of oil in EUR POE 100 · Δ log(𝑥) ✓
Nominal effective exchange rate EERB 100 · Δ log(𝑥) ✓

United States

Real Gross Domestic Product GDPC1 100 · Δ log(𝑥) ✓ ✓
Consumer Price Index CPIAUCSL 100 · Δ log(𝑥) ✓ ✓
Unemployment Rate UNRATE Δ𝑥 ✓ ✓
Federal Funds Rate FEDFUNDS Δ𝑥 ✓ ✓
Personal Consumption Expenditures PCECC96 100 · Δ log(𝑥) ✓
Gross Private Domestic Investment GPDIC1 100 · Δ log(𝑥) ✓
GDP Deflator GDPCTPI 100 · Δ log(𝑥) ✓
Producer Price Index PPIACO 100 · Δ log(𝑥) ✓
Industrial Production Index INDPRO 100 · Δ log(𝑥) ✓
1-Year Treasury Constant Maturity Rate GS1 Δ𝑥 ✓
5-Year Treasury Constant Maturity Rate GS5 Δ𝑥 ✓
Nonfarm All Employees PAYEMS 100 · Δ log(𝑥) ✓
Nonfarm Hours All Persons HOANBS 100 · Δ log(𝑥) ✓
Nonfarm Compensation Per Hour COMPRNFB 100 · Δ log(𝑥) ✓
Capacity Utilization: Manufacturing CUMFNS 𝑥 ✓
Real Crude Oil Prices WTI OILPRICEx 100 · Δ log(𝑥) ✓
US/UK Foreign Exchange Rate EXUSUKx 100 · Δ log(𝑥) ✓
Real M2 Money Stock M2REAL 100 · Δ log(𝑥) ✓
S&P 500 SP500 100 · Δ log(𝑥) ✓

EA, estimating the model and producing 1000 draws from the predictive distribution for the

small BVAR takes about 25 seconds. Doing the same for the TVP-VAR with a medium-sized

information set takes 54 times as long. For further reference, on a 2020 Macbook Air M1 it takes

about 5 seconds per 1000 draws to estimate and predict with the homoskedastic BVAR using

the small EA information set.14

To assess predictive performance, we rely on distinct loss functions that are designed to

measure accuracy along several dimensions. The predictive distributions of our nonparametric

models may feature heavy tails, skewness, or evenmultiple modes— particularly so for higher-

order forecasts. Besides overall measures of the adequacy of our predictions, we thus aim at

painting a more nuanced picture by also focusing on specific parts of the predictive distribu-

14Our empirical results are based on 11000 iterations of the algorithm, discarding the initial 2000 as burnin and
considering each third of the remaining 9000 draws. Thus, the samples used for inference comprise 3000 draws.
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Table 3: Estimation times over the holdout.
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Note: Required time for obtaining 1000 draws from the predictive distribution. Values are averages across all holdout
samples. Rows refer to the small (S) and medium (M) information sets. The gray shaded cells display seconds per
1000 draws, all other models are shown as ratios to this benchmark.

tions. In this context, we first define the Quantile Score (QS, see, e.g., Giacomini and Komunjer,

2005) for quantile 𝜏 ∈ (0, 1):

QS𝜏,𝑖𝑡 = 2(𝑦𝑖𝑡 − 𝒬𝜏,𝑖𝑡)(𝜏 − I(𝑦𝑖𝑡 ≤ 𝒬𝜏,𝑖𝑡)),

which is based on the tick loss function; 𝒬𝜏,𝑖𝑡 is the 𝜏th quantile of the distribution of variable

𝑖 = 1, . . . , 𝑛, and 𝑦𝑖𝑡 the realization of the forecasted variable. Note that for 𝜏 = 0.5, the QS

collapses to themean absolute error (MAE); theQS thus generalizes this commonpoint forecast

metric to generic quantiles.

The QS allows to comment on predictive accuracy at any desired quantile. As a lower-

dimensional summary across quantiles, we follow Gneiting and Ranjan (2011) and define vari-

ants of the quantile-weighted continuous rankedprobability score (CRPS). TheCRPS is a proper

scoring rule and given by:

CRPS𝑚,𝑖𝑡 =
1

𝐽 − 1

𝐽−1∑
𝑗=1

𝔴𝑚(𝜏𝑗)QS𝜏𝑗 ,𝑖𝑡 , 𝜏𝑗 =
𝑗

𝐽
,

where the weights𝔴𝑚(𝜏𝑗) define which part of the predictive distribution shall be targeted. The

trivial case, 𝔴𝑚(𝜏𝑗) = 1, is labeled CRPS in our results. The CRPS is a standard metric for density

forecast performance and can be interpreted in the original scale of the data. An alternative

representation is given by:

CRPS𝑖𝑡 =
∫ ∞

−∞
(ℱ (𝑧) − I(𝑦𝑖𝑡 ≤ 𝑧))2𝑑𝑧,
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where ℱ (𝑧) denotes the cumulative distribution function of the predictive density, see Gneiting

and Raftery (2007).

With an eye to assessing the performance of our models regarding tail events and in non-

normal times, in addition to the non-weighted CRPSwe consider weighting schemes that target

downside-risk (left tail, CRPS-L) and upside-risk (right tail, CRPS-R) respectively: 𝔴L(𝜏𝑗) = (1−

𝜏𝑗)2 and 𝔴R(𝜏𝑗) = 𝜏2
𝑗
. As a rough gauge of significance of the predictive premia, we conduct

Diebold and Mariano (DM, 1995) tests for all predictive losses.

4.3. Forecast results

Tables 4 and 5 summarize our results for the EA and US, respectively. To provide additional

discussions with respect to distinct economic phases, we evaluate the predictive losses also for

subsamples. In particular, we consider four splits: recessions (Re), expansions (Ex), pre Covid-

19 (Pre) and post Covid-19 (Post).15 All results are benchmarked (as ratios) relative to the

medium BVAR with homoskedastic errors, whose grey shaded row displays raw predictive

losses. The best overall specification is indicated in bold, the best specification by size is in italics

(in case no model outperforms the benchmark, this marking is omitted). Levels of statistical

significance for the DM-test, testing for equal versus greater predictive accuracy relative to the

benchmark are: ′ (10 percent), ◦ (5 percent) and ∗ (1 percent).

A helicopter tour

We first provide an overview of general patterns that are apparent for both the EA and the US

across Tables 4 and 5. Overall, there is little to be gained frommoving beyond linearitywhen the

focus is on predicting GDP growth. There are some minor gains, most noteworthy for two-year

ahead point forecasts in the US. If there are gains for the nonparametrics, however, most of them

are either negligible due to tiny improvements in magnitude, statistically insignificant, or result

for less economically important metrics (e.g., upward-risk to GDP as captured by CRPS-R).

For both economies, we find improvements in predictive accuracy for headline inflation

and the unemployment rate, to a varying extent. Starting with inflation, particularly BART

exploiting the medium sized information set indicates gains of up to 5% (EA) and 14% (US),

15Recession dates are taken from the NBER Business Cycle Dating Committee and the Euro Area Business Cycle
Network. The pre and post Covid-19 split is 2019Q4, such that this quarter is the final one in the Pre sub-sample.
The forecasts are allocated to subsamples based on the quarter for which the they were made, not when they were
produced.
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Table 4: Predictive loss metrics for the EA.

1.01

0.99'

0.99

1.27 1.01 1.01

1.03 1.01 0.99

1.53 1.01

1.18 1.01 1.00

1.03 1.01 1.00

1.00 1.00

1.05 1.00

1.02 1.00 0.99°

1.05

1.00 1.01

1.08 1.11 1.10

1.07 1.10 1.11

1.08 1.12 1.11

1.05 1.03 1.07

1.04 1.03

1.07

1.02 1.03 1.09

1.08 1.13 1.10

0.94'

0.93'

0.93'

1.07 0.98 0.97

1.03 1.00 0.96

1.00 0.96

0.97 0.97 1.01

0.96 0.99

0.94 0.97 1.00

0.93' 0.98

1.03 1.00 0.96

0.99

1.02 1.00

1.23 1.01 1.00

1.05 1.02 0.99

1.72 1.01

1.15 1.01 0.99

1.05 1.02 1.01

1.00

1.06 1.00 1.00

1.04 1.01 1.00

1.02 0.98 1.04

1.09 1.11 1.12

1.09 1.12 1.14

1.11 1.14 1.15

1.05 1.03 1.09

1.05 1.02 1.05

1.04 1.01 1.05

1.09 1.14 1.11

0.94

0.94

0.92

1.06 0.96 0.97

1.01 1.00 0.98

0.97 0.94

0.97 0.98 1.06

0.93 0.97 1.03

0.92 0.98 1.05

1.01

1.01 0.99 0.96

0.99

1.00 0.99*

1.34 1.01 1.01

1.01 1.00 1.00

1.34 1.00 0.99

1.23 1.02 1.00

1.02 1.00 1.00

1.01 1.01 1.01

1.04 1.01

1.00

1.03 1.06

0.97

1.06 1.09 1.09

1.04 1.07 1.08

1.05 1.09 1.08

1.05 1.03 1.06

1.03

1.03 1.09

1.00 1.05 1.14

1.07 1.11 1.10

0.93

0.93°

0.92

1.07 0.99 0.97

1.05 1.00 0.94

1.03 0.98

0.97 0.96 0.97

0.96 0.96

0.95 0.96 0.97

0.94' 0.96

1.05 1.00 0.96

1.02

0.99

0.99

1.31 1.01 1.01

1.03 1.01 1.00

1.56 1.00

1.20 1.01 1.00

1.04 1.01 1.01

1.03 0.99 1.01

1.04 1.00

1.01 0.99'

1.05

0.98 1.01

1.08 1.11 1.12

1.07 1.10 1.13

1.08 1.13 1.13

1.05 1.04 1.07

1.04 1.03

1.06

1.01 1.03 1.08

1.08 1.14 1.12

0.97

0.93'

0.94

1.10 1.00 0.99

1.04 1.03 1.00

1.01 0.97

0.98 1.00 1.04

0.98 1.03

0.95 1.01 1.05

0.93' 1.03

1.04 1.02 1.00

CRPS CRPS−L CRPS−R MAE

Y
E

R
H

IC
S

A
U

R
X

1 4 8 1 4 8 1 4 8 1 4 8

GP SV
GP hom
BART SV
BART hom
TVP SV
BVAR SV−t
BVAR SV
BVAR hom

GP SV
GP hom
BART SV
BART hom
TVP SV
BVAR SV−t
BVAR SV
BVAR hom

GP SV
GP hom
BART SV
BART hom
TVP SV
BVAR SV−t
BVAR SV
BVAR hom

Horizon

S

0.99

1.00

 0.61  0.55  0.68

1.07 1.01 1.01

1.12 1.02 1.02

1.04 1.01 1.00

1.43 1.07 1.07

1.04 1.00

1.08 1.00

1.07 1.00 1.01

0.98 0.96 0.96

 0.20  0.21  0.23

1.02 1.02 0.99

1.05 1.06 1.07

1.01 1.00 1.02

1.14 1.24 1.27

1.25 1.28 1.27

1.02 1.01 1.00

0.96

0.96'

0.98

 0.12  0.14  0.15

1.03 1.01 0.98

1.00 0.98

0.99 1.02

1.01' 1.03° 1.00

1.05 1.04 1.03

1.12 1.05 1.04

1.03 1.00

0.99 0.98

 0.19  0.16  0.21

1.10 1.02 1.00

1.16 1.03 1.01

1.03 1.00 1.00

1.35 1.08 1.09

1.03 0.99 0.98

1.08

1.09 1.02 1.00

0.99 0.96 0.98

 0.06  0.06  0.07

1.04 1.02 0.99

1.08 1.08 1.07

1.04 0.99 1.02

1.07 1.08 1.14

1.13 1.12 1.16

1.04 1.02 0.99

0.94'

0.97

0.93

 0.03  0.04  0.04

1.01 1.00 0.98

0.95 0.97

0.99 1.05

0.97° 1.03' 1.03

1.03 1.07 1.09

1.11 1.10 1.11

1.01 0.98

0.99

 0.16  0.16  0.18

1.06 1.01

1.09 1.01 1.03

1.04 1.01 1.01

1.57 1.06 1.06

1.05 1.01 1.01

1.08 1.01 1.02

1.05 0.99 1.02

0.97 0.97 0.96

 0.06  0.06  0.07

1.02 1.01 0.99

1.02 1.04 1.06

1.00' 1.01 1.02

1.22 1.40 1.39

1.38 1.43 1.38

1.01 1.00 1.00

0.98 0.99

0.98

 0.04  0.05  0.05

1.06 1.02 0.99

1.04 0.99 1.00

0.99

1.05 1.04° 0.98

1.07 1.01 0.98

1.12 1.02

1.05 1.01 0.99

0.99

0.99

 0.70  0.64  0.77

1.03 1.01 1.01

1.09 1.02 1.02

1.05 1.01 1.00

1.37 1.06 1.05

1.04 0.99

1.05 1.00

1.03 1.02 1.01

0.95 0.95' 0.95

 0.28  0.29  0.32

1.02 1.02 0.98

1.05 1.06 1.08

1.00' 0.99 1.01

1.12 1.26 1.32

1.23 1.31 1.32

1.02 1.01 1.01

0.95 0.98

0.98

 0.16  0.18  0.20

1.03 1.01 0.99

0.98

1.00 1.02

1.02' 1.03° 1.00

1.10 1.11 1.10

1.17 1.12 1.10

1.03 1.01 1.00

CRPS CRPS−L CRPS−R MAE

1 4 8 1 4 8 1 4 8 1 4 8
Horizon

M

Notes: Real-time data, holdout period from 2001Q2 to 2021Q3. Continuous ranked probability score (CRPS),
quantile weighted CRPS for left tail (CRPS-L) and right tail (CRPS-R), mean absolute error (MAE). DM tests: ′
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depending on the horizon and loss. The performance of GPs deteriorates when moving from

the small to medium-sized information set. Its performance with the small information set in

the US, however, is noteworthy, with gains of about 10% for one-quarter and one-year ahead

predictions of upside-risk. Predictive premia overall appear to be slightly larger for longer-

horizon forecasts.

Additional sizable gains over the benchmark, between 7 to 11% for the EA and US re-

spectively, are present in the context of one-quarter ahead (and in some cases, one-year ahead)

unemployment forecasts for the small information set. BART and GP show very similar out-of-

sample metrics in this case, with the GPs having a slight edge when considering the results for

the US. When assessing longer-horizons, these improvements vanish, and the strong perform-

ance of the TVP-VAR is worth mentioning for the EA.

The gains for unemployment are present mainly for the small-scale nonparametric model

variants. On average, moving from the small to the large information set does not change much

for BART in most cases, although there are some improvements particularly for inflation. The

GP results for headline inflation and unemployment, however, are worse for the large dataset

(albeit they are not significantly worse than the benchmark), which points towards overfitting

issues. By contrast, as expected and in line with the previous forecasting literature, larger linear
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Table 5: Predictive loss metrics for the US.
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BVARs tend to improve forecasts, particularly so for the US. BART does not appear to suffer

to this extent from the issue, in line with our discussion about regression trees and in-sample

versus out-of-sample overfitting in Section 3. In the next subsection, we zoom into specifics and

find that the weaker performance of medium-scale GPs is driven by specific economic periods

and varies across the predictive distribution.

On a general note, however, nonlinearities tend to become less important to improve pre-

dictions as the size of the information set increases. The following argument is in line with the

flexibility provided by TVPs becoming less important for larger models, see, e.g., Huber et al.

(2021). When there is risk of, for instance, omitted variables in small-scalemodels, the nonpara-

metric features may offset suchmisspecification. This results in the margins between linear and

nonlinear models for the small information set being slightly bigger on average. These margins

in many cases can reduce (or even vanish) when moving to the medium-sized information set.

The additional flexibility does not improve forecasts when there is more information to be ex-

ploited, and linearity appears to be a good approximation for larger-scale models, particularly

so for the EA.

Commenting on the necessity of heteroskedastic features, it is worth noting that linear

models tend to improve when adding SV (at least SVs never significantly hurt predictive ac-
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curacy), particularly in the US. This is a well-known result (see, e.g., Clark, 2011). For the EA,

adding SVs is not as crucial, likely due to the shorter available time period. By contrast, there

are overall no systematic patterns in favor or against SVs for BART or GP. This less important

role of SVs has also been described in Clark et al. (2023), and can be explained by the notion that

the flexible conditional mean functions, particularly for BART, can already address particular

forms of heteroskedastic patterns in the data. In many cases, the homoskedastic variant is very

close to the heteroskedastic one, but usually it does not hurt to add SV. There is an exception to

this, however, namely inflation forecasts with medium-sized models in the EA.

With respect to accuracy in different parts of the distributions, we find that the CRPS

often looks like an average of CRPS-L and CRPS-R. Typically, these two tail forecast metrics

are very similar, although there are some noteworthy exceptions. An example are inflation

forecasts for the US, where BART shows more sizable gains when the focus is on upward-risk

(CRPS-R). Moreover, we find that the relative metrics for overall density forecasts, measured

by the CRPS, very often agree with those for point forecasts, the MAE. For this comparison, we

observe an exception for two-year ahead forecasts of US GDP, where the nonparametric models

yield modest gains of up to 4% for point forecasts but they do not improve density forecasts.

Performance over time

Next we investigate whether the forecast performance differs across economic phases and dis-

tinct periods, and if so, when. This sheds light on particular circumstances which render non-

linearities more important, and thus the discussed nonparametric methods particularly useful.

To economize on space, we show only the one-quarter ahead forecasts in Tables 6 and 7 due

to the practical relevance of this horizon. Many patterns we describe are similar across all ho-

rizons we consider, but we note that there are some differences, particularly for short-horizon

forecasts. Tables of these additional results are provided in the Online Appendix.

Starting with GDP, we find that averaging over the full holdout sample masks some note-

worthy gains from using GPs during recessions in both the EA and the US. In particular, we

find overall improvements for density forecasts of about 5% with the medium versions. More

importantly, they show even more sizable improvements when considering CRPS-L, of up to

almost 10% lower values. In fact, CRPS-L tracks the lower tail of the distribution of GDP, and is

thus closely linked to measuring growth-at-risk. And such downside-risk to GDP is naturally
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Table 6: One-year ahead predictive loss metrics for the EA.
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a key issue during recessions, making these gains particularly relevant. Interestingly, this ap-

pears to relate specifically to how GPs estimate the conditional mean functions, because these

improvements are non-existent for BART.

Dissecting the comparatively weak full sample performance for the medium-scale GP

variants (for unemployment, and even more so, inflation) reveals that these relatively worse

metrics are mainly due to expansionary (i.e., non-recessionary) economic phases. In addition,

it is worth noting that CRPS-L and CRPS-R differ substantially especially for the expansionary

sub-sample. The poor overall density forecast performance is in large parts due to the right tail

of the respective predictive distributions during expansions. Zooming into these sub-samples
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Table 7: One-year ahead predictive loss metrics for the US.
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actually suggests that we need to redeem the medium-sized GPs, since they are indeed the best

performing models for unemployment forecasts during recessions, with improvements for the

EA of about 20% lower CRPSs, and almost 30% lower CRPS-R, which measure the econom-

ically important accuracy for predicting upward-risk to unemployment. A similar pattern is

observable for the US, albeit with smaller magnitudes.

Turning to inflation specifically, the most striking finding is the consistent solid perform-

ance of BART across all sample splits in both economies. The homoskedastic version is superior

in the EA, while the SVs contribute modest further improvements for the US. We again observe

somewhat better relative metrics in recessions when compared to expansions for the EA, espe-
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cially for the medium-sized information set. Interestingly, this is not the case for the US, where

some of the gains are larger in expansions than recessions by a few percentage points. This sug-

gests that nonlinearities are also present in recovery periods from economic downturns, and

these are best picked up by BART. For instance, we observe between 12 to 15% decreases in the

predictive losses (depending on the specific loss), relative to the benchmark for BART-SV in

expansions.

Last, we distinguish between the pre- and post-pandemic periods. Most importantly,

when assessing the raw predictive losses we find them to be an order of magnitude larger

when comparing the latter to the former period. We begin with listing several patterns with

respect to the BVARs. Looking at the relative performance metrics on aggregate for GDP and

unemployment, we find that they are roughly stable for the EA. In the US, the relative numbers

increase modestly. This is different for inflation in the US, where particularly the BVAR-SV and

SV-t variants show a better relative performance benchmarked against the homoskedastic one.

Especially the 𝑡-distributed errors appear to offer some gains. When turning to the nonpara-

metrics, there are several improvements for post-pandemic GDP and unemployment forecasts

for the EA (but not the US). But these improvements pale in comparison to those for inflation,

especially so in the US. The recent inflation surge is picked up satisfactorily by both BART and

the GP, with between 12 to 15% improvements over the benchmark depending on the loss func-

tion in the EA, and between 20 to almost 40% in the US. It is worth mentioning that the largest

relative gains in magnitude arise for upside-risk to inflation, which is indeed arguably the most

relevant metric given the context of observed inflation dynamics during this period.

Odds and ends

While we have found many commonalities between the EA and the US, there are some differ-

enceswhich deserve explanations. The EA aggregates are averages of a large and heterogeneous

block of individual countries, and these averages perhaps smooth out country-level dynamics

that could be exploited by the nonparametric models (as in, e.g., Huber et al., 2023). Further,

publication lags in information set, i.e., for the euro area, imply that the one-step ahead forecast

is de facto already a multi-step ahead forecast due to the ragged edges. It is also worth mention-

ing that there are three recessions in the EA (the global financial crisis, sovereign debt crisis and

pandemic, with the latter being not a conventional recession), and four in the US. In general,
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the evaluation period for the US is much longer, and the ratio between recession/expansion

quarters is much smaller in the US. This indeed also has implications with respect to the DM

tests (e.g., the lack of significance for some of the subsamples is explained by the small number

of observations used to construct the test statistic). Further, the recent high-inflation period is

only partly captured in the EA dataset.

The EA as an average of many individual countries, alongside the much longer sampling

period in the US, and potential timing heterogeneities arising from the real-time versus pseudo

out-of-sample forecast evaluation schemes explain some of the differences between the two eco-

nomies we discussed above.

5. CLOSING REMARKS

In this chapter we have reviewed specification and estimation of multivariate Bayesian non-

parametric models for forecasting macroeconomic and financial variables. To flexibly model

the conditional mean functions, we focus on BART and GPs. Efficient estimation is enabled by

relying on a FSV specification of the reduced form errors, which also addresses heteroskedastic

patterns and co-movement across a potentially large set of time series of interest.

How these methods fit data, and which kinds of patterns they are capable of detecting, is

illustrated with single-equation examples using US data for inflation, unemployment and out-

put. We subsequently apply small and medium sized multivariate models for point, density

and tail forecasting using a EA and US dataset. Various metrics of predictive accuracy are com-

pared to variants of BVARs and TVP-VARs, and particularly the medium-scale BVAR-SV is an

often used and very capable benchmark.

We find some gains in predictive accuracy for the nonparametric approaches. Most not-

ably, they perform well for short-run forecasts of unemployment (especially GPs), and longer-

run predictions of inflation (with BART being particularly strong). There is some evidence

for differentials in performance over the business cycle, and for non-standard economic phases

such as during and after the Covid-19 pandemic. Nonlinearities as captured by BART and the

GPs are particularly helpful during recessions, and they do well in predicting the recent surge

of inflation.
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Goulet Coulombe P,MarcellinoM, and Stevanović D (2021), “Canmachine learning catch theCovid-19

recession?” National Institute Economic Review 256, 71–109.
Gu S, Kelly B, and Xiu D (2021), “Autoencoder asset pricing models,” Journal of Econometrics 222(1),

429–450.
Hamilton JD (1989), “A new approach to the economic analysis of nonstationary time series and the

business cycle,” Econometrica 57(2), 357–384.
Hastie T, Tibshirani R, and Friedman JH (2009), The elements of statistical learning: Data mining, inference,

and prediction, volume 2, New York, NY: Springer.
Hauzenberger N, Huber F, Klieber K, and Marcellino M (2022), “Enhanced Bayesian Neural Networks

for Macroeconomics and Finance,” arXiv 2211.04752.
Hauzenberger N, Huber F, MarcellinoM, and Petz N (2021), “Gaussian process vector autoregressions

and macroeconomic uncertainty,” arXiv 2112.01995.
Hirano K (2002), “Semiparametric Bayesian inference in autoregressive panel data models,” Economet-

rica 70(2), 781–799.
Hornik K, Stinchcombe M, and White H (1989), “Multilayer feedforward networks are universal ap-

proximators,” Neural Networks 2(5), 359–366.
Huber F, Koop G, and Onorante L (2021), “Inducing sparsity and shrinkage in time-varying parameter

models,” Journal of Business & Economic Statistics 39(3), 669–683.
Huber F, Koop G, Onorante L, PfarrhoferM, and Schreiner J (2023), “Nowcasting in a pandemic using

non-parametric mixed frequency VARs,” Journal of Econometrics 232(1), 52–69.
Huber F, and Rossini L (2022), “Inference in Bayesian additive vector autoregressive tree models,” The

Annals of Applied Statistics 16(1), 104–123.

31



Jin X, Maheu JM, and Yang Q (2022), “Infinite Markov pooling of predictive distributions,” Journal of
Econometrics 228(2), 302–321.

Kalli M, and Griffin JE (2018), “Bayesian nonparametric vector autoregressive models,” Journal of Eco-
nometrics 203(2), 267–282.

Kastner G, and Huber F (2020), “Sparse Bayesian vector autoregressions in huge dimensions,” Journal
of Forecasting 39(7), 1142–1165.

Makalic E, and Schmidt DF (2015), “A simple sampler for the horseshoe estimator,” IEEE Signal Pro-
cessing Letters 23(1), 179–182.

Masini RP, Medeiros MC, and Mendes EF (2023), “Machine learning advances for time series forecast-
ing,” Journal of Economic Surveys 37(1), 76–111.

McCrackenM, and Ng S (2020), “FRED-QD: A quarterly database for macroeconomic research,”NBER
Working Paper 26872.
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A. ECONOMETRIC APPENDIX

A.1. Details about priors

On the dynamic coefficients of the BVAR (and the constant part of the TVPs in the non-centered

parameterization, when applicable), we assume a Gaussian prior of the form:

𝒂𝑖 ∼ 𝒩(𝒂𝑖 ,𝑽𝑎𝑖),

where 𝑽𝑎𝑖 = 𝜏2
𝑎𝑖
· diag(𝜆2

𝑎,𝑖1 , . . . ,𝜆
2
𝑎,𝑖𝑘

); in our application we set 𝒂𝑖 = 0𝑘 , but note that a variant

of the canonical Minnesota prior could be established by setting specific elements of the prior

mean to 1 rather than 0. On the square root of the state innovations we use a Gaussian prior,

which implies independent marginal Gamma priors on the state innovations:

𝜽1/2
𝑖

∼ 𝒩(0𝑘 ,𝑽𝜃𝑖) ⇐⇒ 𝜃𝑖 𝑗 ∼ 𝒢
(
1
2
,

1
2𝜏2𝜃𝑖𝜆

2
𝜃,𝑖 𝑗

)
, for 𝑗 = 1, . . . , 𝑘,

where 𝑽𝜃𝑖 = 𝜏2𝜃𝑖 · diag(𝜆
2
𝜃,𝑖1 , . . . ,𝜆

2
𝜃,𝑖𝑘). A very similar Gaussian prior is assumed for the factor

loadings matrix, with the key difference that the global shrinkage parameter in this case applies
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across equations 𝑖 = 1, . . . , 𝑛:

𝒍𝑖 ∼ 𝒩(0𝑞 ,𝑽𝑙𝑖),

where 𝑽𝑙𝑖 = 𝜏2
𝑙
· diag(𝜆2

𝑙 ,𝑖1 , . . . ,𝜆
2
𝑙 ,𝑖𝑞

).

The 𝜏’s refer to the global shrinkage parameter of the HS prior, while the 𝜆’s indicate local

scalings. The horseshoe is obtained by assuming independent half-Cauchy priors on all of them.

We briefly present a generic version of the horseshoe that applies to all parameters where it is

used discussed. Let 𝜷 = (𝛽1 , . . . , 𝛽𝑑) denote a generic 𝑑-dimensional vector of parameters, and

assume a prior 𝛽 𝑗 ∼ 𝒩(𝛽 𝑗 , 𝜏2𝜆2
𝑗
)with global shrinkage parameter 𝜏 ∼ 𝒞+(0, 1) and local scalings

𝜆 𝑗 ∼ 𝒞+(0, 1) for 𝑗 = 1, . . . , 𝑑.

In particular, we exploit the auxiliary representation of the HS, see Makalic and Schmidt

(2015), which enables straightforward Gibbs updates:

𝜆2
𝑗 |𝑒 𝑗 ∼ 𝒢−1(1/2, 1/𝑒 𝑗), 𝜏2 | 𝑓 ∼ 𝒢−1(1/2, 1/ 𝑓 ); 𝑓 , 𝑒 𝑗 ∼ 𝒢−1(1/2, 1)

which yields the following posterior distributions:

𝜆2
𝑗 |• ∼ 𝒢−1

(
1, 1

𝑒 𝑗
+

(𝛽 𝑗 − 𝛽 𝑗)2

2𝜏2

)
, 𝜏2 |• ∼ 𝒢−1 ©­«𝑑 + 1

2
,
1
𝑓
+

𝑑∑
𝑗=1

(𝛽 𝑗 − 𝛽 𝑗)2

2𝜆2
𝑗

ª®¬ ,
𝑒 𝑗 |• ∼ 𝒢−1

(
1, 1 + 𝜏−2𝑗

)
, 𝑓 |• ∼ 𝒢−1

(
1, 1 + 𝜏−2

)
On the parameters governing the SVs, we use independent vague priors for the uncon-

ditional means, 𝜇𝑖ℎ ∼ 𝒩(0, 10). In addition, we impose stationarity via the prior using trans-

formed beta distributed priors, (𝜙𝑖ℎ+1)/2, (𝜙 𝑗𝜔+1)/2 ∼ ℬ(5, 1.5). On the variances, we assume

𝜍2
𝑖ℎ
, 𝜍2

𝑗𝜔 ∼ 𝒢(1/2, 1/2), which implies a standard normal prior on 𝜍𝑖ℎ , 𝜍 𝑗𝜔. The priors on the ini-

tial states, ℎ𝑖0 , 𝜔 𝑗0 are assumed to follow the unconditional distribution of the AR(1) processes.

The kernel used for the GP regression features two tuning parameters collected in 𝝑𝑖 =

(𝜉𝑖 , 𝑙𝑖)′. Here, we use equation-specific independent Gamma priors, 𝑝(𝝑𝑖) = 𝑝(𝜉𝑖)𝑝(𝑙𝑖); and thus

assume 𝜉𝑖 ∼ 𝒢(𝑎𝜉𝑖 , 𝑏𝜉𝑖) and 𝑙𝑖 ∼ 𝒢(𝑎𝑙𝑖 , 𝑏𝑙𝑖). Given the positive support of these parameters, we

use a log-normal transition density in a random walk MH algorithm to sample them.
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A.2. Sampling the conditional mean functions

Constant and time-varying parameter vector autoregressions

Constant Parameters. Writing the 𝑖th equation in full data matrices, using 𝒚̃𝑖 = (𝑦̃𝑖1 , . . . , 𝑦̃𝑖𝑇)′,

𝑿 = (𝒙1 , . . . , 𝒙𝑇)′, 𝜼𝑖 = (𝜂𝑖1 , . . . , 𝜂𝑖𝑇)′ and the variances of the idiosyncratic error term 𝑯𝑖 =

diag(𝒉𝑖) we have:

𝒚̃𝑖 = 𝑿𝒂𝑖 + 𝜼𝑖 , 𝜼𝑖 ∼ 𝒩(0𝑇 ,𝑯𝑖),

and the posterior of takes a textbook Gaussian form, 𝒂𝑖 |• ∼ 𝒩(𝒂𝑖 ,𝑽𝑎𝑖), with moments:

𝑽𝑎𝑖 =

(
𝑿 ′𝑯−1

𝑖 𝑿 + 𝑽𝑎𝑖
−1

)−1
, 𝒂𝑖 = 𝑽𝑎𝑖(𝑿 ′𝑯−1

𝑖 𝒚̃𝑖 + 𝑽𝑎𝑖
−1𝒂𝑖).

Time Varying Parameters. For sampling the TVPs, we rely on the following representation of

equation 𝑖 of the full system:

(𝑦̃𝑖𝑡 − 𝒙′𝑡𝒂𝑖) = 𝒙′𝑡diag
(
𝜽1/2
𝑖

)
𝒂̃𝑖𝑡 + 𝜂𝑖𝑡 ,

which is the measurement equation of a standard conditionally Gaussian state space model,

enabling Kalman filter based updates. Then, conditional on a draw of the TVPs, we may define

𝒙̃𝑡 = (𝒙𝑡 ⊙ 𝒂̃𝑖𝑡), such that we have an equivalent representation:

𝑦̃𝑖𝑡 = 𝒙′𝑡𝒂𝑖 + 𝒙̃′𝑡𝜽
1/2
𝑖

+ 𝜂𝑖𝑡 .

This is again a conditionally Gaussian regression model, and textbook posteriors apply for

sampling the conditional mean parameters 𝒂𝑖 and square roots of the state innovations 𝜽1/2
𝑖

in one block.

Bayesian Additive Regression Trees

Each tree in BART is sampled conditional on the remaining 𝑆 − 1 trees. In this context, define

partial residuals 𝒚̌𝑖𝑠 = 𝒚𝑖 −
∑

𝑗≠𝑠 ℓ𝑖 𝑗(𝑿 |𝒯𝑖 𝑗 , 𝝁𝑖 𝑗) excluding the 𝑠th tree. Chipman et al. (2010)

show how to analytically marginalize the conditional posterior with respect to the terminal
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node parameters 𝝁𝑖 𝑗 , which keeps the dimensionality of the inference problem fixed:

𝑝(𝒯𝑖 𝑗 |𝒚̌𝑖𝑠 , •) ∝ 𝑝(𝒯𝑖 𝑗)
∫

𝑝(𝒚̌𝑖𝑠 |𝒯𝑖 𝑗 , 𝝁𝑖 𝑗 , •)𝑝(𝝁𝑖 𝑗 |𝒯𝑖 𝑗 , •)𝑑𝝁𝑖 𝑗 .

The posterior 𝑝(𝒯𝑖 𝑗 |𝒚̌𝑖𝑠 , •) can be used in an MH-updating scheme, based on transition density

𝑞(𝒯 (∗)
𝑖 𝑗

|𝒯 (𝑐)
𝑖 𝑗

)which produces a candidate tree 𝒯 (∗)
𝑖 𝑗

conditional on the current (𝑐) state of the tree

𝒯 (𝑐)
𝑖 𝑗

. The resulting acceptance probability has a standard form and is given by:

min ©­«
𝑝(𝒯 (∗)

𝑖 𝑗
|𝒚̌𝑖𝑠 , •)

𝑝(𝒯 (𝑐)
𝑖 𝑗

|𝒚̌𝑖𝑠 , •)

𝑞(𝒯 (𝑐)
𝑖 𝑗

|𝒯 (∗)
𝑖 𝑗

)

𝑞(𝒯 (∗)
𝑖 𝑗

|𝒯 (𝑐)
𝑖 𝑗

)
, 1ª®¬ .

Conditional on the tree structures, sampling the terminal node parameters is trivial. In

particular, subject to the partitions of the input space we obtain distinct observations for each

terminal node. The posterior takes the form of an intercept-only regression model.

Gaussian process regression

For a generic set of training observations in 𝑿 and test observations 𝑿 ∗, the joint distribution of

the target 𝒚̃𝑖 and the function values is given by:

©­«
𝒚̃𝑖

𝒇 ∗
𝑖

ª®¬ ∼ 𝒩 ©­«0,

𝒦𝝑𝑖

(𝑿 ,𝑿 ′) + 𝑯𝑖 𝒦𝝑𝑖
(𝑿 ,𝑿 ∗′)

𝒦𝝑𝑖
(𝑿 ∗ ,𝑿 ′) 𝒦𝝑𝑖

(𝑿 ∗ ,𝑿 ∗′)

ª®¬
where 𝑯𝑖 = diag(𝒉𝑖). In particular, this expression gives rise both to the in-sample distribution

of the conditional mean function, and the predictive distribution. In general, we have 𝒇 ∗
𝑖
∼

𝒩( 𝒇𝑖 ,𝑽𝑓 𝑖), with moments:

𝒇𝑖 = 𝒦𝝑𝑖
(𝑿 ∗ ,𝑿 ′) (𝒦𝝑𝑖

(𝑿 ,𝑿 ′) + 𝑯𝑖)−1 𝒚̃𝑖 ,

𝑽𝑓 𝑖 = 𝒦𝝑𝑖
(𝑿 ∗ ,𝑿 ∗′) − 𝒦𝝑𝑖

(𝑿 ∗ ,𝑿 ′) (𝒦𝝑𝑖
(𝑿 ,𝑿 ′) + 𝑯𝑖)−1𝒦𝝑𝑖

(𝑿 ,𝑿 ∗′).

Wewill also need an expression for the logarithm of the conditional likelihood, which can

be used to optimize the tuning parameters encoded in 𝝑𝑖 via a MH-updating scheme. Note that

𝒚̃𝑖 ∼ 𝒩(0,𝒦𝝑𝑖
(𝑿 ,𝑿 ′)+𝑯𝑖), and 𝑝(𝒚̃𝑖 |•) is thus the density of a zero mean multivariate Gaussian

with covariance matrix 𝒦𝝑𝑖
(𝑿 ,𝑿 ′) + 𝑯𝑖).
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To update the GP tuning parameters via aMH-step, note that the acceptance probabilities

for candidate draws 𝝑∗
𝑖
using a transition density 𝑞(𝝑(∗)

𝑖
|𝝑(𝑐)

𝑖
) are given by:

min

(
𝑝(𝒚̃𝑖 |𝝑(∗)

𝑖
, •)𝑝(𝜽(∗)

𝑖
)

𝑝(𝒚̃𝑖 |𝝑(𝑐)
𝑖
, •)𝑝(𝜽(𝑐)

𝑖
)

𝑞(𝝑(𝑐)
𝑖
|𝝑(∗)

𝑖
)

𝑞(𝝑(∗)
𝑖
|𝝑(𝑐)

𝑖
)
, 1

)
.

A.3. Additional sampling steps

Sampling the Factors. Recall that the FSVmodel of Eq. (2), which is given by 𝝐𝑡 = 𝑳𝔉𝑡+𝜼𝑡 . In

stacked notation, using 𝑇𝑛×1-vectors 𝝐 = (𝝐′1 , . . . , 𝝐
′
𝑇
)′, 𝜼 = (𝜼′1 , . . . , 𝜼

′
𝑇
)′, and 𝔉 = (𝔉′

1 , . . . ,𝔉
′
𝑇
)′,

𝛀 = bdiag(𝛀1 , . . . ,𝛀𝑇), 𝑯 = bdiag(𝑯1 , . . . ,𝑯𝑇), we may write:

𝝐 = (𝑰𝑇 ⊗ 𝑳)𝔉 + 𝜼, 𝔉 ∼ 𝒩(0𝑇𝑞 ,𝛀), 𝜼 ∼ 𝒩(0𝑇𝑛 ,𝑯).

The operator bdiag(•) refers to stacking matrices, and outputs a block diagonal matrix. This

is just a big linear regression model, and the joint posterior of the factors arises as a Gaussian

distribution 𝔉|• ∼ 𝒩
(
𝔉,𝑽𝔉

)
, with textbook moments:

𝑽𝔉 =

(
(𝑰𝑇 ⊗ 𝑳′)𝑯−1(𝑰𝑇 ⊗ 𝑳) +𝛀−1

)−1
, 𝔉 = 𝑽𝔉

(
(𝑰𝑇 ⊗ 𝑳′)𝑯−1𝝐

)
.

Sampling the Loadings. The loadings are sampled variable-by-variable. Let 𝒚𝑖 = (𝑦𝑖1 , . . . , 𝑦𝑖𝑇)′

denote variable 𝑖 stacked over time, 𝝐𝑖 = (𝜖𝑖1 , . . . , 𝜖𝑖𝑇)′, 𝜼𝑖 = (𝜂𝑖1 , . . . , 𝜂𝑖𝑇)′ and 𝔉̃ is the 𝑇 × 𝑞 full

data matrix of factors, 𝒍𝑖 = 𝑳′
𝑖• the loadings associated with the 𝑖th equation and 𝑯𝑖 = diag(𝒉𝑖),

such that we may write:

(𝒚𝑖 − 𝒇𝑖) ≡ 𝝐𝑖 = 𝔉̃𝒍𝑖 + 𝜼𝑖 , 𝜼𝑖 ∼ 𝒩 (0𝑇 ,𝑯𝑖) .

The posterior of the loadings is Gaussian, 𝒍𝑖 |• ∼ 𝒩
(
𝒍𝑖 ,𝑽𝑙𝑖

)
, with moments:

𝑽𝑙𝑖 =

(
𝔉̃′𝑯−1

𝑖 𝔉̃ + 𝑽𝑙𝑖
−1

)−1
, 𝒍𝑖 = 𝑽𝑙𝑖(𝔉̃′𝑯−1

𝑖 𝝐𝑖).

Sampling the Volatilities. The factors and idiosyncratic shocks can be written independently

as 𝔉𝑞𝑡 = exp(𝜔 𝑗𝑡/2)𝜁𝔉,𝑞𝑡 and 𝜂𝑖𝑡 = exp(ℎ𝑖𝑡/2)𝜁𝜂,𝑖𝑡 with 𝜁•𝑡 ∼ 𝒩(0, 1). Squaring and taking

logs moves the SVs into the conditional mean of these measurement equations, which then
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feature a log 𝜒2 error term. Using a 10-component Gaussian distribution as an approximation,

as suggested in Omori et al. (2007), allows for standard filtering and smoothing algorithms to

draw the SVs factor-by-factor and equation-by-equation.

For the homoskedastic case, the variances of the factors are normalized to 1, and under

inverse Gamma priors exp(ℎ𝑖) ∼ 𝒢−1(𝑎0 , 𝑏0) on the idiosyncratic shocks, we obtain textbook

posteriors: exp(ℎ𝑖)|• ∼ 𝒢−1(𝑎0 + 𝑇/2, 𝑏0 +
∑𝑇

𝑡=1 𝜂
2
𝑖𝑡
/2).

The extension to 𝑡-distributed errors is achieved by introducing auxiliary variables 𝛾𝑖𝑡 ∼

𝒢−1(𝜈𝑖/2, 𝜈𝑖/2). In particular, these can be used to write 𝜂𝑖𝑡 ∼ 𝑡𝜈𝑖
(
0, exp(ℎ 𝑗𝑡)

)
conditionally as

𝜂𝑖𝑡 |𝛾𝑖𝑡 ∼ 𝒩
(
0, 𝛾𝑖𝑡 exp(ℎ 𝑗𝑡)

)
, where the marginal distributions coincide. This enables efficient

conditional Gibbs updates via data augmentation.
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Online Appendix: Bayesian nonparametric methods for
macroeconomic forecasting

OA. FORECAST RESULTS BY SUBSAMPLE

OA.1. Euro area: Results by forecast horizon

Table OA.1: One-quarter ahead predictive loss metrics for the EA.
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Table OA.2: Two-year ahead predictive loss metrics for the EA.
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OA.2. United States: Results by forecast horizon

Table OA.3: One-quarter ahead predictive loss metrics for the US.
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Table OA.4: Two-year ahead predictive loss metrics for the US.
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