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Abstract

In this paper we take an empirical asset pricing perspective and investigate the dominant view (possibly, an

instinctive reflection of the media hype surrounding the surge of Bitcoin valuations) that cryptocurrencies

represent a new asset class, spanning risks and payoffs sufficiently different from the traditional ones. Method-

ologically, we rely on a flexible dynamic econometric model that allows not only time-varying coefficients,

but also allow that the entire forecasting model be changing over time. We estimate such model by looking

at the time variation in the exposures of major cryptocurrencies to stock market risk factors (namely, the

six Fama French factors), to precious metal commodity returns, and to cryptocurrency-specific risk-factors

(namely, crypto-momentum, a sentiment index based on Google searches, and supply factors, i.e., electricity

and computer power). The main empirical results suggest that cryptocurrencies are not systematically exposed

to stock market factors, precious metal commodities or supply factors with the exception of some occasional

spikes of the coefficients during our sample. On the contrary, crypto assets are characterized by a time-varying

but significant exposure to a sentiment index and to crypto-momentum. Despite the lack of predictability

compared to traditional asset classes, cryptocurrencies display considerable diversification power in a portfolio

perspective and as such they can lead to a moderate improvement in the realized Sharpe ratios and certainty

equivalent returns within the context of a typical portfolio problem.
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parameter regressions.
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1 Introduction

In the wake of the appearance of cryptocurrencies in the space of media-covered phenomena and,

more specifically, in the set of investable assets, one question has loomed large in the minds of finan-

cial analysts and portfolio managers: are they a novel, innovative asset class, potentially segmented

away—i.e., driven by alternative economic forces and factors—from other, traditional asset classes?

As a matter of fact, the highly fragmented, multi-platform, decentralised and granular nature of cryp-

tocurrency markets adds plausibility to the conjecture that crypto assets may indeed be separated

from traditional, centralized asset market exchanges.1

The property of segmentation acts as a double-edged sword in empirical finance and asset pricing.

On the one hand, when an asset class is segmented, often this occurs because we understand less

precisely what are the factors and the structure of the pricing kernel that manages to price the asset

class, both in the time series and in the cross-sectional dimensions. This is of course a source of a

difficulty that should advise investors to be cautious when they decide whether to allocate any portion

of their wealth to the new asset. On the other hand, exactly because an asset class is segmented away

from the rest of the asset menus, it tends to offer large and persistent diversification opportunities. An

asset class driven by forces and factors that are not common to other assets may offer a considerable

hedge, especially during market downturns.2 Therefore, there is considerable debate as to whether

and how cryptocurrencies may be segmented from traditional asset classes. Our paper contributes to

the empirics of this debate with reference to the statistical and portfolio value properties of the major

and most liquid cryptocurrencies.

In particular, in this paper we are driven by the belief that a particular appealing way to un-

derstand what cryptocurrencies are is to investigate whether their returns behave similarly to other

asset classes in a forecasting framework. In other words, we assess how investors and markets value

current and future prospects of cryptocurrencies. We use standard tools of empirical asset pricing to

comprehensively analyze cryptocurrency risks and returns. Specifically, we study whether major cryp-

1For instance, Makarov and Schoar (2020) study the efficiency and price formation of Bitcoin and other cryptocur-
rencies. They show empirically that there are large and persistent arbitrage opportunities in cryptocurrency trading
relative to fiat currencies across different exchanges. Similarly, Bianchi and Dickerson (2019) show that market activ-
ity is primarily driven by heterogeneous investors’ trading that speculate on private, superior, information; consistent
with the idea that trading in virtual currencies inherently generates heterogeneous beliefs due the opaqueness of the
information flow.

2Segmentation is at best only sufficient for this implication to follow. Asset classes priced by the same pricing kernel
may be uncorrelated or even negatively correlated when their respective loadings on the same factors that enter the
pricing kernel are sufficiently different (e.g., when the loadings carry different signs).
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tocurrencies dynamically co-move with stocks, currencies, commodities, macroeconomic variables, as

well as with cryptocurrency market specific factors in ways that can be exploited to forecast their

returns and—eventually, using a portfolio diversification approach—to generate positive economic

value to investors. We tackle such an empirical endeavour by using a flexible time-varying economet-

ric approach that eschews the perils of standard linear regression analysis.

It is widely acknowledged that recursive, regression methods suffer from three problems. First,

the sensitivity of a the (expected) return to a change in a given risk factor may not necessarily be time

invariant in the data generating process. There is a large literature in macroeconomics and finance

which documents structural breaks and other sorts of parameter change in many time series (see,

among many others, Stock and Watson, 1996; Bianchi et al., 2017). Recursive regression methods are

poorly designed to capture such parameter changes: to build models designed to capture it often turns

out to be a dominant strategy. Second, the number of potentially relevant predictors can be large

and not known a priori, i.e., the nature and the number of risk factors that explain the dynamics of

cryptocurrency returns is uncertain.3 In light of this fact, an ever expanding literature has turned to

Bayesian methods, either by performing Bayesian model averaging (BMA) or by automating the model

selection process, e.g., see Maltritz and Molchanov (2013). Yet, even in these cases, computational

demands can become daunting when the researcher is facing a number of models that grows with the

power of the number of predictors, P , i.e., 2P . Third, the model relevant to a forecasting application

may potentially change over time (see, e.g., Pesaran and Timmermann, 2005). That means that not

only there may be dynamics in a time-series sense, i.e., time-varying parameters, but also in a cross-

sectional sense, i.e., the number of parameters that are significant at a given point in time can change

throughout the sample. This issue further complicates an already daunting econometric exercise: if

the researcher faces 2P models and, at each point in time, a different predictive model applies, the

number of combinations of models which must be estimated in order to forecast the target variable is

2T×P . Even in relatively simple forecasting exercises, it can be computationally infeasible to forecast

by simply going through such an enormous amount of model combinations.

In this paper, we follow a strategy first developed by Raftery et al. (2010) and then exploited in

macroeconomic forecasting applications by Koop and Korobilis (2012), which is commonly referred

to as dynamic model averaging (henceforth, DMA, see e.g., Wang et al., 2016). Their approach can

3If the set of models is defined by whether each of P potential predictors is included or excluded, then the researcher
has 2P models. This raises substantive statistical problems for model selection strategies.
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also be used for dynamic model selection (DMS) in which a single (potentially varying) model is used

to derive forecasts at each point in time. DMA and DMS seem ideally suited to yield maximum flexi-

bility within the problem of predicting cryptocurrency returns as they allow for the predictive model

to undergo structural change,at the same time, allowing for the coefficients in each model to evolve

over time.4. Moreover, DMA and DMS only involve standard econometric methods routinely applied

to state space models such as the Kalman filter but (via some empirically-sensible approximations)

achieve vast gains in computational efficiency. DMS and DMA can be interpreted as applying shrink-

age in a number of ways. In particular, DMS puts zero weight on all models other than the one best

model, thus “shrinking” the contribution of all models except a single one towards zero. In fact, one

cannot rule out a prior that this additional shrinkage may provide some additional predictive power

over DMA, which just shrinks the model weights based on past predictive performance. Furthermore,

in times of rapid change, DMS will tend to switch more quickly than DMA does because it can select

an entirely new model as opposed to adjusting the weights within all the models. In any event, both

DMA and DMS may allow for both gradual or abrupt changes in the role of a predictor. Standard

time-varying parameter regressions by construction—especially when the coefficients are assumed to

follow a random walk, as it is typical—fail to allow for abrupt changes and instead force smooth

variation of the slope coefficients over time.

We systematically apply DMA and DMS techniques to the time-series returns of four major

cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Ripple) and five traditional asset classes (US

stocks, worldwide developed country stocks ex-US, US investment grade corporate bonds, spot gold,

and long-short positions equivalent to the trade-weighted US dollar exchange rate) over a 2011-2019

sample. The choice of these four cryptocurrencies is dictated by (1) the length of time time series

available, (2) the considerable depth of market liquidity (being prominently traded cryptocurrencies),

and (3) the fact that they have been regularly investigated in existing, related, research (see, e.g., Liu

and Tsyvinski, 2018). The latter adds to the comparability of our results to the existing literature.

Empirically, we report four key results. First, cryptocurrencies are characterized by returns that

are less predictable on average when compared to other asset classes, including gold and the trade

value-weighted US dollar exchange rate. Both recursive, total mean-squared forecast error (MSFE)

and relative out-of-sample (OOS) R-square measures show that while dynamic modeling strategies

4The issues caused by structural change in the risk-return trade-off characterizing cryptocurrency returns has also
been investigated by Krueckeberg and Scholz (2019)
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deliver relatively low MSFEs and positive (often high) OOS R-squares for traditional asset classes,

this is not the case for cryptocurrencies. Second, crypto assets are characterized by returns that can

be forecast according to patterns and with a measurable degree of time variation that differ from most

other asset classes, including gold, which has been often indicated as the most closely related asset

class (see Klein et al., 2018). For instance, consistently with the empirical results in Drobetz et al.

(2019) and Li and Yi (2019), sentiment—here measured by the rate of growth of the Google searches

concerning each cryptocurrency—proves to be a key prediction variable, which is clearly not the case

with traditional asset classes. Third, in recursive asset allocation experiments, cryptocurrencies are

able to generate considerable, realized OOS economic value (especially when measured in terms of ex-

post Sharpe ratios) when they are added to otherwise traditional asset menus of cash, corporate bonds,

US and international stocks, and long-short exchange rate positions. However, cryptocurrencies are

unable to offer much advantage in terms of realized, risk-adjusted portfolio performances deriving

from any predictability patterns characterizing them. Finally, the value of cryptocurrencies cannot

be reduced only to the fact the investors may have access to long positions in Bitcoin, in the sense

that also Ethereum, Litecoin, and Ripple appear to generate substantive OOS realized economic value

when they are added to the asset menu in addition to Bitcoin, also because they offer diversification

benefits vs. Bitcoin returns.

1.1 Related literature

This paper contributes to three main strands of research. First, this paper adds to a growing litera-

ture that aims at understanding the investment properties of cryptocurrencies. Yermack (2015) and

Dyhrberg (2016) have investigated the diversification properties of Bitcoin within the context of a

diversified portfolio and reached opposite conclusions. In particular, Yermack (2015) argues that Bit-

coin is uncorrelated with the majority of fiat currencies and is much more volatile, therefore being of

limited usefulness for risk management purposes and diversification. Bianchi (2019) uses a larger set of

cryptocurrencies to find that, except for a mild correlation with the returns on precious metals, there

is no significant relationship between returns on cryptocurrencies and global proxies of traditional

asset classes. He also reports that standard macroeconomic factors such as in inflation expectations,

the yield curve, and real exchange rates do not play a significant explanatory role, lending support to

a segmentation of cryptocurrency markets with respect to more traditional asset classes. Borri (2019)

has shown that the returns dynamics of major cryptocurrencies is exposed to tail risk possibly due
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to trading activity. Similarly to these papers, we find that adding cryptocurrencies—importantly not

only Bitcoin—to a standard asset menu may generate considerable economic value, despite the scant

predictability evidence.

The most closely related paper is Liu and Tsyvinski (2018) who have established that the risk-

return trade-off of the same, major cryptocurrencies investigated in our paper is distinct from those of

stocks, currencies, and precious metals. However, differently from their in-sample investigation simply

based on multivariate linear regressions, we adopt a flexible dynamic modeling approach to study the

predictability of cryptocurrency returns and resorts to OOS recursive asset allocation experiments

to measure the ex-post realized economic value of both predictability and of cryptocurrency as an

alternative asset class.

Secondly, we contribute to growing literature on the economics of cryptocurrency markets. Ex-

amples are Gandal et al. (2018), Makarov and Schoar (2020), Sockin and Xiong (2018), Foley et

al., 2019; Bianchi and Dickerson (2019). For instance, Gandal et al. (2018) and Foley et al. (2019)

show that the trading activity and the consequent price dynamics may not necessarily be driven by

risk sharing purposes but rather by fraudulent behaviours. Similarly, Makarov and Schoar (2020)

and Bianchi and Dickerson (2019) show empirically that there are large and persistent arbitrage op-

portunities in cryptocurrency trading relative to fiat currencies across different exchanges, and that

the crypto returns dynamics is primarily driven by investors who “speculate” on private information,

respectively. We complement and extend this literature by showing that the return dynamics of cryp-

tocurrencies cannot be reconciled by standard risk factors. That is, cryptocurrency markets may be

indeed segmented away from traditional asset classes.

Third, ontribute to a large literature on time-varying return predictability. Among many others,

examples are Pastor and Stambaugh (2009), Rapach et al. (2010), van Bisbergen and Koijen (2010),

Dangl and Halling (2012), Pettenuzzo et al. (2014), Johannes et al. (2011), and Zhu (2013). We

extend this literature by looking at the predictive power of otherwise standard risk factors within

the context of cryptocurrency markets. Note that the aim of our paper is not to overthrow existing

results from the traditional returns predictability literature, but rather to draw a direct comparison

with the existing research on other asset classes in order to better understand the economics of

cryptocurrency markets. In this respect, due to the institutional differences, we view this paper as an

out-of-sample test of existing evidence on time-varying predictability developed in more traditional
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The rest of the paper is organized as follows. Section 2 introduces the empirical methodology

applied in the paper. Section 3 describes data sources and the main features of the series investigated.

Section 4 reports detailed empirical results derived from the estimation of DMA and DMS models for

each cryptocurrency under investigation. Section 5 seeks direct answers to our key question concerning

the segmentation of cryptocurrencies, by comparing their forecasting features and their realized OOS

predictive and portfolio performances with traditional asset classes. Section 6 concludes.

2 Methodology

Let’s start from a standard, o↵-the-shelf time varying parameter (TVP) regression model specification

for the return on some generic, jth asset or security (see, e.g., Cogley and Sargent, 2005, Dangl and

Halling, 2012, Bianchi et al., 2017, Bianchi and McAlinn, 2018, and Guidolin et al., 2019 among

others):

rj
t+1 = ✓j0,t +

PX

p=1

(✓j
p,t
)0zj

p,t
+ ✏j

t+1 = (✓j
t
)0zj

t
+ ✏j

t+1 t = 1, ..., T , j = 1, ..., J (1)

✓j
t

= ✓j
t�1 + ⌘t t = 1, ..., T , j = 1, ..., J (2)

where zj
t
is a jth asset-specific (P +1)⇥ 1 vector of predictors potentially specific to currency/asset j

(always including a unit constant to absorb the intercept coe�cient and possibly encompassing lags

of rj
t+1), ✓

j

t
is a (P + 1) ⇥ 1 of possibly time-varying coe�cients (states), ✏j

t
IID N(0, hj

t
), ⌘t IID

N(0,Lj

t
), and the errors ✏j

t
and ⌘t are assumed to be mutually independent at all leads and lags and

for all currencies or assets.

This model displays all the flexible power of TVP models, especially over and above constant

coe�cient models (including the case in which these are estimated recursively). Yet, in forecasting

applications, (1)-(2) su↵er from the drawback that the same set of explanatory variables is assumed

to be relevant at all points in time. Additionally, when P is large, the potential for such a rich TVP

regression to over fit the data appears to be substantial, which may rapidly damage the predictive

power of the overall framework. Following Koop and Korobilis (2012), we overlay on this model a

simple technique to let alternative models to hold at di↵erent points in time while their coe�cients

remain time-varying and average across them.
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Suppose to have a set of Q models which are characterized by having di↵erent subsets of zj
t
as

predictors. Denoting these by zj
t
(q) for q = 1, 2, ..., Q, our set of models can be written as (we have

dropped the j index for clarity) of:

rt+1 = ✓t
0(q)zt(q) + ✏t+1(q) t = 1, ..., T , q = 1, ..., Q (3)

✓t(q) = ✓t�1(q) + ⌘t(q) t = 1, ..., T , q = 1, ..., Q, (4)

where ✏t(q) IID N(0, ht(q)), ⌘t(q) IID N(0,Lt(q)), and the errors are mutually independent at all

leads and lags. Let Mt 2 {1, 2, ..., Q} denote which model applies at each time period t, which implies

that we shall be letting di↵erent models hold at each point in time but dynamically average across

them, i.e., when forecasting time t+ 1 returns using information through time t:

• DMA involves calculating Pr(Mt = q|rt, rt�1, ..., r1) for q = 1, 2,..., Q and averaging forecasts

across models using these probabilities;

• DMS involves selecting the single model with the highest value for Pr(Mt = q|rt, rt�1, ..., r1)

and using this to forecast.

However, both DMA and DMS are cursed by a inherent risk of over-parameterization while the

computational burden which arises when Q is large remains a high hurdle. In particular, although

the natural approach is to let the model selection to be driven by a latent Markov chain so that the

how predictors enter/leave the model in real time is simply captured by a transition matrix, T, with

elements ⌧ij = Pr(Mt+1 = j|Mt = i), see e.g., Guidolin (2011), inference in such models is theoretically

straightforward, but computationally infeasible because T will be considerably large for interesting

choices of the number of predictors, P .5 However, in our implementation of DMA, standard Kalman

filter methods to be ran only Q times can be used at the cost of skipping the exact specification of

a transition matrix and therefore giving up on the exact structure of Markov switching predictive

regressions. As we shall explain below (or see Raftery et al., 2010, for an exhaustive treatment), the

econometric framework (3)-(4) implies that the entire state vector, t, breaks into blocks (with one

block for each model) which are independent of one another (i.e. the predictive density depends on

✓t(q) only conditionally on Mt = q).

5For instance, in the case in which the models are defined according to whether each predictor is included or excluded,
Q = 2P so that T will be a 2P⇥2P matrix and will contain (because of sum up constraints) 22P�1 parameters to estimate.
For instance, with P = 17, we shall be facing 233 = 8, 589, 934, 592 free parameters to estimate, so that problem will
become computationally unfeasible.
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The approximation proposed by Koop and Korobilis (2012) depends on two parameters, � and

 , which we shall call forgetting factors and set to be slightly below one, to allow decay over time

to occur. Their role is best explained in a standard Kalman filter iteration when model switching

is (just for expositional purposes) ignored. For given values of ht and Lt, standard Kalman filtering

starts with ✓t|rt, rt�1, ..., r1 ⇠ N(✓̂t,⌃t|t), where ⌃t|t depends on ht and Qt. Then filtering proceeds

using:

✓t+1|rt, rt�1, ..., r1 ⇠ N(✓̂t,⌃t+1|t) ⌃t+1|t = ⌃t|t + Lt+1. (5)

Raftery et al. (2010) have noted that the computational burden simplifies substantially when the

updating recursion is simplified to:

⌃t+1|t =
1

�
⌃t|t = ⌃t|t +

✓
1

�
� 1

◆
⌃t|t, (6)

or equivalently Lt+1 =
�
1� 1

�

�
⌃t|t where 0 < �  1. Importantly, this formula does not depend on

the estimate of Lt+1. In line with the empirical literature, we set � = 0.99.

Estimation in the one model case is then completed by the updating equations:

✓t+1|rt+1, rt, rt�1, ..., r1 ⇠ N(✓̂t+1,⌃t+1|t+1) (7)

✓̂t+1 = ✓̂t +⌃t+1|tzt(ht+1 + z0t⌃t+1|t+1zt)
�1(rt+1 � ✓t

0zt) (8)

⌃t+1|t+1 = ⌃t+1|t �⌃t+1|tzt(ht+1 + z0t⌃t+1|tzt)
�1z0t⌃t+1|t (9)

rt+1|rt, rt�1, ..., r1 ⇠ N(✓̂0tzt, ht + z0t⌃t+1|tzt). (10)

Conditional on ht, these results are analytical and, thus, no Markov chain Monte Carlo (MCMC)

algorithm is required. This greatly reduces the computational burden.

In the case of DMA, we use this approximation of the Kalman filter and an additional one. Call ⇥t

the vector collecting all coe�cients, ⇥t ⌘ [✓0t(1) ✓
0
t(2) ... ✓

0
t(Q)]0. First, the previous filtering equations

for ✓t+1 now become:

⇥t|Mt = q, rt, rt�1, ..., r1 ⇠ N(✓̂t(q),⌃t|t(q)) (11)

⇥t+1|Mt+1 = q, rt, rt�1, ..., r1 ⇠ N(✓̂t(q),⌃t+1|t(q)) (12)

⇥t+1|Mt+1 = q, rt+1, rt, rt�1, ..., r1 ⇠ N(✓̂t+1(q),⌃t+1|t+1(q)), (13)
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where ✓̂t(q), ⌃t|t(q), and ⌃t+1|t(q) are computed from (8), (9), and (6), respectively. However, con-

ditional on Mt = q, the prediction and updating equations will only provide information on ✓t(q)

and not the full vector ⇥t: one needs a method for unconditional prediction to obtain probability-

weighting of forecasts across values for ✓̂t(q). We follow Koop and Korobilis (2012) and introduce one

additional, forgetting-like factor to be applied to the state equation across models,  , comparable to

the forgetting factor used with the state equation for the parameters, �. Note that by definition the

probability transition equation is,

pdf(⇥t|rt, rt�1, ..., r1) =
QX

q=1

pdf(✓t|Mt = q, rt, rt�1, ..., r1) Pr(Mt = q, rt, rt�1, ..., r1)

=
QX

q=1

pdf(✓t|Mt = q, rt, rt�1, ..., r1)⇡t|t,q, (14)

where pdf(✓t|Mt = q, rt, rt�1, ..., r1) comes from ✓t(q)|rt, rt�1, ..., r1 ⇠ N(✓̂t(q),⌃t|t(q)). In the case of a

standard Markov switching model, when the elements of the transition matrix T are ⌧ij = Pr(Mt+1 =

j|Mt = i), (14) would be:

⇡t+1|t,q =
QX

l=1

⇡t|t,l⌧lq, (15)

but we approximate it by:

⇡t+1|t,q =
⇡ 
t|t,q

P
Q

l=1 ⇡
 

t|t,l
0 <   1 (16)

which is a type of multi-parameter power steady model. To understand further how the forgetting

factor can be interpreted, note that this specification implies that the weight used in DMA which is

attached to model q at time t is updated according to:

⇡t+1|t,q =
[⇡t|t�1,qpdf(rt�1|Mt�1 = q, rt�2, ..., r1)] 

P
Q

l=1[⇡t|t�1,lpdf(rt�1|Mt�1 = l, rt�2, ..., r1)] 

_ [⇡t�1|t�2,qpdf(rt�2|Mt�2 = q, rt�3, ..., r1)]
 
2
[pdf(rt�1|Mt�1 = q, rt�2, ..., r1)]

 

_ ... _
Yt�1

i=1
[pdf(rt�i|Mt�i = q, rt�i�1, ..., r1)]

 
i
⇡ 

t

0|0,q, (17)

so that model q receive more weight at time t if it has forecast well in the recent past (where forecast

performance is measured by the predictive density, pdf(rt�i|Mt�i = q, rt�i�1,..., r1)). The interpreta-

tion of “recent past”is controlled by the forgetting factor, and we have the same exponential decay

at the rate  i for observations i periods ago. Clearly, it is not enough for one time performance in
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the past to highly disappointing, i.e., pdf(rt�i|Mt�i = q, rt�i�1,..., r1) ' 0, for ⇡t+1|t,q ' 0 because

the expression in (17) fails to iterate over a scaling factor which may also get very close to zero when

in the past all the moments have produced some performances characterized by very small predictive

density scores.6 In line with the empirical literature, and also for consistency with our earlier choice

for �, we set  = 0.99.

The benefit of using this approximation in the model prediction equation is that we do not require

an MCMC algorithm to draw transitions between models nor a simulation algorithm over the space

of models. The reason is that a simple, but e↵ective updating equation is:

⇡t|t,q =
⇡t|t�1,q ·

from⇠N(✓̂0t�1(q)zt�1,ht+z0t�1⌃t|t�1(q)zt�1)
z }| {
pdf(rt|Mt = q, rt�1, ..., r1)

P
Q

l=1 ⇡t|t�1,l · pdf(rt|Mt = l, rt�1, ..., r1)| {z }
from⇠N(✓̂0t�1(l)zt�1,ht+z0t�1⌃t|t�1(l)zt�1)

. (18)

At this point, recursive forecasting can be performed by averaging over predictive results for every

model using ⇡t+1|t,q to perform the weighing across models. Therefore, DMA point predictions are

given by:

r̂DMA

t+1|t ⌘ E[rt+1|rt, rt�1, ..., r1] =
QX

l=1

⇡t+1|t,l✓̂
0
t(l)zt = (✓̂DMA

t+1|t )
0zt(l), (19)

where ✓̂DMA

t+1|t ⌘
P

Q

l=1 ⇡t+1|t,l✓̂t(l) is the filtered, real-time forecast of the predictive regression coe�-

cients applicable at time t+1 given the information available at time t. In any event, this framework

implies that forecasting is performed in real time in the sense that, for all our variables, we use the

value which would have been available to the forecaster at the time the forecast was being made with

no hindsight bias possible.

DMS proceeds instead by selecting the single model with the highest value for ⇡t+1|t,q for q =

1, 2,..., Q at each point in time and simply using it for forecasting:

r̂DMS

t+1|t = ✓̂0t(k̂t)zt(k̂t) k̂t ⌘ arg max
k=1,...,Q

⇡t+1|t,k. (20)

Of course, also the DMS forecast is a real-time one. In this case, we can define ✓̂DMS

t+1|t ⌘ ✓̂t(k̂t) and

write about a filtered, sup-type real time forecast of the predictive regression coe�cients applicable

6Of course, if we were to set  = 1, then ⇡t+1|t,q would be simply proportional to the marginal likelihood using data
through time t, which is a standard Bayesian model averaging (BMA) approach. However, one formally has BMA only
when � =  = 1 which implies using conventional linear forecasting models with no time variation in coe�cients.

11



at time t+ 1 given the information available at time t.

In summary, conditional on knowing or estimating ht for t = 1, 2,..., T , the DMA and DMS

algorithms surveyed above only involve updating formulas that identical or approximations of typical

Kalman filter iterations. All recursions are simply started out by selecting a prior for ⇡0|0,q and ✓̂0(q),

q = 1, 2,..., Q. In a very pragmatic way, we set ⇡0|0,q = 1/Q and ✓̂0(q) = 0 for all values of the state

q, to allow the data to truly express the existence of any predictability relation.7 As for ht(q), we

follow Raftery et al. (2010) and simply proceed to plug in place of ht(q) a consistent estimate that—in

line with existing applied work using DMA and DMS methods—is simply based on an Exponentially

Weighted Moving Average (EWMA) estimator,

ĥt+1(q) =

vuut(1� �)
t+1X

i=1

�i�1(rt+1�i � ✓̂0
t�i

(q)zt�i(q))2

=
q
�ĥt(q) + (1� �)(rt � ✓̂0

t
(q)zt(q))2 (21)

with ĥ0(q) = T�1PT

i=1(rt+1�i � ✓̂0
t�i

(q)zt�i(q))2. Notice that, in view of our use of weekly data we

set the RiskMetrics-style parameter to � = 0.96 to guarantee a not too slow decay.

3 The Data

We use weekly returns and growth rate series throughout. Cryptocurrency price data series are

from the CoinDesk website. For Bitcoin, we use data from December 27, 2010 to January 27, 2019

because there was not much liquidity and trading in earlier years. The data series for Litecoin ranges

from July 14, 2013 to January 27, 2019; the one for Ripple from April 5, 2015 to January 27, 2019;

finally, the price series for Ethereum are the shortest, spanning a May 30, 2016 - January 27, 2019

sample. In all cases, samples are relatively short than what may be nominally available, because these

minor cryptocurrencies saw trading and liquidity increase only between 2013 and 2015. We construct

cryptocurrency return series using the corresponding price data.

The spot price of precious metals are from several sources. The gold and silver prices are from

the London Bullion Market Association (LBMA). Platinum prices are from the London Platinum and

7Note that ⌃1|1(q) = ⌃1|0(q) �⌃1|0(q)z0(h1(q) + z00⌃1|0(q)z0)
�1z00⌃1|0(q) just requires knowledge of ⌃1|0(q) =

1
�⌃0|0(q). We set ⌃0|0(q) = 100ĥ0(q)IP+1, where the last estimate is specified in the main text. This prior is of course,
very di↵use and reflects considerable, initial uncertainty on the financial nature of crytpocurrencies as an asset class.
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Palladium Market (LPPM). Also in this case, we compute return series from prices without including

any value of carry. Even though spot precious metals are not directly or easily tradable, we have

checked that the returns from 1-month futures contracts (obtained from Reuters Datastream) all give

correlations between 0.97 and 0.99 with the spot returns obtained from spot prices.

Aggregate and individual stock return data are from CRSP. We obtain the Fama French 3-factor,

Carhart 4-factor, and Fama French 5-factor models dataseries from Kenneth French’s website. The

data on corporate bond returns are from the ICE BofAML US Corporate Master Index, which tracks

the performance of US dollar denominated investment grade rated corporate debt publicly issued in

the US domestic market.8

Because earlier literature (see, e.g., Drobetz et al., 2019 and Li and Yi, 2019) has shown the im-

portance of sentiment in explaining cryptocurrency returns, Google search data series are downloaded

from Google.9 To proxy for supply factors, we get back to basics and acknowledge that mining a cryp-

tocurrency requires two inputs:10 electricity and computer power. For electricity, we consider two

proxies, i.e., the value-weighted stock returns of U.S.-listed electricity firms and the value-weighted

stock returns of the China-listed electricity companies. The reason why we include the China proxies

is because electricity supply is location specific and because China is considered to have the largest

coin mining operation among all countries (see, e.g., Li et al., 2019). For proxies of computer power,

we consider the stock returns of the companies that are major manufacturers of either GPU mining

chips (Nvidia Corporation and Advanced Micro Devices, Inc, AMD for short) or ASIC mining chips

(Taiwan Semiconductor Manufacturing Company, Limited and Advanced Semiconductor Engineering,

Inc, TSMC fort short), see, e.g., Liu and Tsyvinski (2018).

Table 1 describes the series under analysis. While the four cryptocurrencies span partly by con-

struction, partly by choice di↵erent sample periods—while always providing su�ciently long sample

8To qualify for inclusion in the index, securities must have an investment grade rating (based on an average of
Moody’s, S&P, and Fitch) and an investment grade rated country of risk (based on an average of Moody’s, S&P, and
Fitch foreign currency long term sovereign debt ratings). Each security must have greater than 1 year of remaining
maturity, a fixed coupon schedule, and a minimum amount outstanding of $250 million.

9Da et al. (2011) uses Google searches to proxy for investor attention.
10Mining is the process of adding transaction records to a cryptocurrency public ledger of past transactions; this

ledger of past transactions is called the block chain as it is a chain of blocks. The primary purpose of mining is to set
the history of transactions in a way that is computationally impractical to modify by any one entity. The blockchain
serves to confirm transactions to the rest of the network as having taken place. Cryptocurrency nodes use the blockchain
to distinguish legitimate transactions from attempts to re-spend coins that have already been spent elsewhere. Mining
is intentionally designed to be resource-intensive and di�cult so that the number of blocks found each day by miners
remains under control. Mining is also the mechanism used to introduce new crypto coins into the system: Miners are
paid any transaction fees as well as a “subsidy” of newly created coins. This both serves the purpose of disseminating
new coins in a decentralized manner as well as motivating people to provide security for the system.
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periods of investigation, between 139 and 422 weekly observations—we report summary statistics for

the remaining portfolio and asset returns as well for the non-financial predictors with reference to

the longest, 2002-2019 sample. The first panel reports summary statistics on cryptocurrency returns.

A few stylized facts well known from the literature (see, e.g., Liu and Tsyvinski, 2018) emerge. All

cryptocurrencies carry very high mean weekly returns, in the order of 150% (for Ethereum) - 230%

(for Ripple) in annualized terms. This is due the rapid growth in the value of cryptocurrencies ex-

perimented between 2014 and 2017. However such high mean returns are countered by two features.

First, all cryptocurrencies are characterized by astonishingly high realized weekly volatilities, ranging

between 18 and 32 percent (which amounts to a volatility of 125 - 210 percent in annualized terms).

Second, on top of such high volatilities, all cryptocurrencies (but Ethereum, for which the recorded

series are however shorter than for the rest of our data), total massive excess kurtosis coe�cients,

between 17 and 57. This means that, even after discounting their high variability as measured by

their second moment, crypto returns are plagued by massive tails, which reflects that hugely negative

and positive returns are always possible. One last feature of cryptocurrency returns is interesting:

their weekly median returns are systematically much lower (even negative in the case of Litecoin and

Ripple) vs. weekly mean returns. Even though an analysis of the empirical distributions of cryptocur-

rency returns reveals that multiple modes are possible, medians that are systematically lower than

means are indicative (this is su�cient in the case of uni-modal distributions) of positive skewness,

that indeed appears to be considerable, between 0.82 (Ethereum) and 5.94 (Litecoin). As already

commented by Liu and Tsyvinski (2018), cryptocurrencies are assets representing “miracles” (as well

as “disasters”, as revealed by the massive excess kurtosis) or, equivalently, are a kind of securitized

lottery tickets. In spite of their large variability, all cryptocurrencies are characterized by very at-

tractive weekly Sharpe ratios, between 0.11 for Litecoin (that however has an extremely appealing

right-skewness) to a stunning 0.19 for Bitcoin, which has probably contributed to its fame and to a

recent drive towards introducing derivatives trading having Bitcoin as the underlying asset.11

The empirical facts about the other asset/portfolio returns are generally better known, with a

few surprises. On the one hand, the value-weighted market excess returns yield an annualized mean

return of approximately 8%, annualized volatility of just less than 14%, negative skewness (which

makes aggregate stock market returns structurally di↵erent from cryptocurrency returns) and some

non-negligible excess kurtosis that is however much lower vs. the case of crypto. The Sharpe ratio

11See, e.g., A. Osipovic, “Another Exchange Jumps on Bitcoin Bandwagon”, the Wall Street Journal, 12 March 2018.
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is between half and two-thirds compared to cryptocurrencies, which is largely known. The surprises

come from most of the five Fama-French factor-mimicking long-short portfolio: SMB (representing

size), HML (value), and CMA (investment) portfolio returns are all negative, either on average or in

median terms. It is well known that the so-called “smart beta” factor portfolios are smart because

they generate positive risk premia. However, such a requirement is to be intended to apply on average,

unconditionally and over long periods of time: this explains why on our 10-year data sample, it occurs

that many such factors fail to return a positive premium. In any event, the RMW (the quality) and

Carhart’s momentum factors do return large premia and strong Sharpe ratios. While gold, platinum

and silver appear to have declined on average and therefore to have yielded performances very di↵erent

from the cryptocurrencies, the three individual stock return series (especially NVIDIA and AMD,

the producers of GPU mining chips) display properties that tend to be consistent with the general

summary statistics for the cryptocurrencies.

Finally, the Google searches for the world “bitcoin” tend to grow on average but this happens

through sudden jumps, as revealed by the fact that their median growth is in fact negative, the

skewness is positive (4.33) and large and excess kurtosis is massive (29.2), similarly to the returns on

cryptocurrencies.

4 Recursive Empirical Estimates

Using the methodologies of Section 2, we proceed to the recursive estimation of (3)-(4) for each of

the cryptocurrency returns series, using in each of the four runs of the DMA and DMS algorithms

all the available data. The selection of the initialization (“prior”) parameters (⇡j0|0,q, ✓̂
j

0(q
j), ⌃j

0|0(q
j),

qj = 1, 2,..., Qj , j = Bitcoin, Litecoin, Ripple, and Ethereum) and of the forgetting factors (� and

 ) are the ones reported in Section 2. In our exercises, we use P = 17 for all currencies which

implies that Qj = 131,072, which is a rather enormous number of models to deal with!12 To ease

the interpretation of the estimated coe�cients and of the resulting plots, the predictors in zt are

standardized by dividing their values by their recursively estimated standard deviation, as in Koop

and Korobilis (2012).

12Instead a constant intercept is always included in all models.
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4.1 Bitcoin

With reference to Bitcoin data, in Figure 1, we report 15 out of the available 18 plots for the recursive

estimates of the vector ✓̂DMA

t+1|t between January 2011 and January 2019. We include the estimated

constant ✓̂DMA

0,t+1|t but we exclude—because of space constraints and just to keep the resulting plots

su�ciently readable—the graphs concerning the predictive slope coe�cients for AMD and TSMS

stock returns and for the returns on a value-weighted portfolio of U.S.-listed electricity firms. The

plots remain available upon request but in what follows we express a few simple comments on their

shape and dynamics. In Figure 1, for each estimated coe�cient, we report the same values on a

double scale. On left-hand axis, we adopt a scale homogeneous across di↵erent plots that ranges

between -2 and +2. Therefore, on the left-hand scale, we can interpret the elements of ✓̂DMA

t+1|t to

measure the cryptocurrency return reaction to a one-standard deviation shock to the predictor on the

right-hand side, when all other predictors are held constant. Clearly, coe�cients exceeding ±1 are

predictors that cause a more than proportional e↵ect on cryptocurrency returns, while coe�cients

close to zero indicate a small or no reaction of a cryptocurrency to a predictor. On the right-hand

side, we report the estimated coe�cients on a scale that varies instead across di↵erent predictors, for

better readability of the variation of the coe�cients over time. However, it must be stressed that in

both cases, the estimates that are plotted are identical, just represented on di↵erent scales to allow

for more meaningful interpretation and commentary.

The thicker lines, to be compared with the left-scale in Figure 1 reveal that—with minor exceptions

concerning 2011-2012 for most coe�cients, NVDIA stock returns between 2013 and 2015, and mostly

importantly the rate of growth of Google searches concerning the word “Bitcoin” (consistently with

the role of sentiment in Drobetz et al., 2019 and Li and Yi, 2019)—there is very limited overall

predictability, across model averages, of Bitcoin returns: most of the time and for most predictors

(apart from the Google search variable), the estimated coe�cients carry values close to zero. The

thinner curves (see the right scale) show that even if the slopes are modest, they display considerable

variation: also because of the small of observations the DMAs are based on, they oscillate considerably

early on in the sample, and many of them tend to spike up and increase between 2013 and 2015, when

Bitcoin returns seemed to turn more predictable than on the average of the full 2011-2019 sample.

The estimated constant plays a key role, taking a positive and large values that fits the initial rapid

growth of Bitcoin prices, during the first half of 2011, when ✓̂DMA

0,t+1|t declines from more than 3% to
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less than 0.3% per week and then fluctuates between 0 and 0.4% per week.

The top panel of Table 2 presents statistics summarizing the information in Figure 1. The means

and medians of the recursively estimated DMA slopes are generally modest and very far o↵ the

±1 one-to-one reactivity. The only partial exception is ✓̂DMA

p,t+1|t for p = Google searches of the word

“Bitcoin”, characterized by a mean of 0.12 and by a median of 0.09. Moreover, the coe�cient oscillates

in sign but it seems to be above one in absolute value continuously between 2011 and 2017, with rare

interruptions: Bitcoin is an asset dominated by the “wisdom of the crowds”, dubbing the famous

title by Chen et al. (2014), and is therefore a sentimental asset. Sensibly enough, as the “buzz”

concerning Bitcoin spreads, its returns are predicted to be higher, although the marginal impact

is rather modest (on average, 12 basis points per each standard deviation increase in the weekly

growth of the searches). Interestingly, after the Google searches are taken into account, per se Bitcoin

momentum or even a simple AR(1) term turn out to imply on average modest coe�cient estimates.

More generally—as shown by the boldfacing in the last two columns of the table—for 5 predictors out

of 17, we have evidence of their empirical (probability-weighted across models) 90% confidence band

failing to include a zero coe�cient: the VW excess market return (a vestige of CAPM, albeit with

modest coe�cients), the returns on the investment factor-mimicking portfolio, spot silver returns,

and especially the rate of growth of Google searches, as already emphasized. In fact, we have also

computed the unconditional average number of predictors included by the DMA algorithm using the

straightforward formula

SizeDMA

j ⌘
T

j�1X

t=1

Q
jX

l=1

⇡t+1|t,lSize(✓̂
j

t
(l)) j = Bitcoin, Litecoin, Ripple, and Ethereum, (22)

where Size(✓̂j
t
(l)) returns the number of predictors included in model l at time t. It turns out that

under DMA, SizeDMA

Bitcoin
= 4.66, which appears to be rather modest. Inspection of unreported plots

of Size(✓̂Bitcoin
t (l)) shows that the average size of the models favored by the recursively updated

probabilities increases sensibly (to exceed 6) between 2014 and 2015 and in the final part of the

sample, after 2017. However, there are long spells (2012-2013 and 2016) in which Size(✓̂Bitcoin
t (l))

falls below two: basically nothing but Google searches can forecast Bitcoin returns.

Figure 2 has a structure similar to Figure 1, but instead of showing ✓̂DMA

t+1|t , it plots the time t

probability of each predictor to be included across the QBitcoin = 131,072 models entertained in the
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paper, Pr(zj
p,t

included) ⌘
P

Q

l=1 ⇡t+1|t,l I
n
✓̂p,t(l) 6= ?

o
, where I

n
✓̂t(l) 6= ?

o
indicates that predictor

p = 1, 2,..., P is included in the vector zt(l). Although this does not apply in general, the plots

indicate that the reason for the low estimated ✓̂DMA

t+1|t vectors in Figure 1 and in the summaries in

Table 2 does not really derive from negligible estimated probability of inclusion, but from generally

modest estimates of the regression coe�cients. For instance, Bitcoin has a low DMA “beta” relative

to the market portfolio not because the latter is a predictor carrying a low probability of inclusion

(as this exceeds on average 0.35 and 0.50 between 2013 and 2016), but because the estimated slope

is persistently small. However, in the case of Google searches and of NVIDIA stock returns, Figure 2

gives evidence of a persistently strong probability of inclusion of these two predictors, that also tend

to represent the lower bound of inclusion commented earlier on. Bitcoin returns are almost always

predicted by these two variable, with peaks during 2012-2015 and then again after 2017, when Pr(zj
p,t

included) comes to exceed 0.6, with peaks in excess of 0.9. Finally, we note that after a peak in

late 2013, the probability of inclusion for most predictors tend to drift up starting in mid-2017, i.e.,

Bitcoin return seem to have recently become more predictable, even though it is harder for us to

judge whether this corresponds to a temporary, regime shifting-like increase or not.

Figure 3 reports 15 out of the available 18 plots for the recursive estimates of the vector ✓̂DMS

t+1|t

for the recursive out-of-sample January 2011 - January 2019. We include the estimated constant

✓̂DMS

0,t+1|t but we exclude—because of space constraints—the graphs concerning the predictive slope

coe�cients for AMD and TSMS stock returns and for the returns on a value-weighted portfolio of

U.S.-listed electricity firms.13 Visibly, all plots flat-line at zero, indicating that the corresponding

predictor is never selected in the optimal mix with three exceptions, in order of importance and

magnitude: the rate of weekly growth of Google searches of the term “Bitcoin”, which enters the best

prediction model over 2013-2015 and 2018, giving a rather sizeable ✓̂DMS

Google,t+1|t estimate; NVIDIA

returns which are included between mid-2011 and 2015, and then sporadically in 2017; the market

portfolio excess returns, that matter—although with a rather model CAPM-style beta—after 2014.

In fact, an overview of Figure 3 reveals that over the initial part of the sample, especially 2011 and

2012, Bitcoin returns are predicted by very simple models, occasionally just featuring a constant,

with the exception of short sub-intervals in which own-momentum, the investment factor portfolio

or the US electrical stock index (unreported) do play some role. However, in spite of the fact that

13The predictor rAMD,|t has a blip in correspondence of late 2011 and it is otherwise never selected by the DMS
algorithm.
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depending on past market and NVIDIA returns may make some sense on rational grounds, it remains

the case that Bitcoin is largely a sentimental asset, essentially and uniquely predicted by Google

searches. In fact, SizeDMS

Bitcoin
= 1.81 only and for approximately 40% of our 8-year sample, only the

best prediction model k̂t just includes Google search growth and a constant. Moreover, the bottom

panel of Table 2 gives a less rosy picture (we leave as a blank the rows corresponding to predictors

that never entered the optimal model set): the means and medians of the standardized predictors are

generally small, never exceed 0.20 in absolute value, while their (across time series and cross-sections

of models) empirical 90 percent confidence interval always includes zero. In other words, even though

Google search momentum comes close to display some predictive power for Bitcoin returns, this is

generally muted in a DMS algorithmic perspective.14

4.2 Litecoin

Figure 4 replicates Figure 1 in the case of Litecoin returns, while the top panel of Table 3 reports

summary statistics for ✓̂DMA

t+1|t in this case.15 The table shows at a glance—especially when we focus

on whether the empirical 90% confidence bands for the estimated coe�cients happen to include zero

or not—that there is a bit more predictability in the case of Litecoin vs. Bitcoin. However, also in

the light of Figure 4, the source of such additional predictability is quickly established: lagged Bitcoin

returns forecast Litecoin returns with a DMA coe�cient that has a mean of 0.28 and a median of 0.32.

Although these values are below one and imply a relatively muted reaction to past Bitcoin return

shocks, such mean estimated coe�cients are relatively large in light of the evidence in Table 2 and

Figure 1, concerning Bitcoin. In fact, Figure 4 shows that the slope coe�cient projecting Litecoin

returns on past Bitcoin returns grows over the 2013-2019 sample, starting in fact from small but

negative values and then strongly drifting up, especially between 2015 and 2017. This implies that

Litecoin—even at rather low frequency weekly intervals—may be priced o↵ recent Bitcoin returns.

Also in this case, the rate of growth of the number of Google searches for “Litecoin” is a stable

and strong forecasting variable, with a mean (median) DMA coe�cient of 0.43 (0.31), which also

characterizes this cryptocurrency as an a high attention-beta asset.16 The empirical evidence also

14The set of predicted model/state probabilities under DMA and DMS are identical by construction because DMS is
a probability-based refinement of DMA. Therefore the same analysis of Figure 2 performed above applies here.

15In Figure 4, to save space, we omit to report the DMA time series for the value-weighted Chinese and US electricity
stock portfolio returns. However, as also shown in Table 3, the associated coe�cients are generally small and hardly
economically significant.

16However, Figure 4 shows that the DMA coe�cient on Google searches has steadily declined in the case of Litecoin,
going from levels close to 1 in late 2013 to neglible or negative values by the end of our sample.
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emphasizes that a few other predictors tend to be e↵ective most of the time: the returns on spot

gold and silver (especially after 2016 but with heterogeneous signs, i.e., gold and Litecoin would be

complements but silver and Litecoin would instead be substitutes); the individual share returns on

AMD and TSMC, yet also in this case with estimated coe�cients characterized by positive means and

medians (albeit rather small and characterized by positive spikes against a background of negative,

lagged dependence, see Figure 4).

These properties are magnified by the DMS algorithm, for which summary statistics are reported

in the bottom panel of Table 3. There are only two predictors that turn out to be selected and

therefore display non-zero means and medians and these are the expected ones, i.e., Bitcoin lagged

returns and the rate of growth in the Google searches of the word Litecoin. Litecoin momentum

and the returns on NVIDIA and AMD stocks enter the predictive regressions but only sporadically.

Indeed while under DMA we have that SizeDMA

Bitcoin
= 5.38 (which is in fact higher vs. what we had

estimated for Bitcoin, consistently with Table 3), under DMS SizeDMS

Bitcoin
= 1.62 which represents a

stark contrast but also delivers a very powerful conclusion: Litecoin returns are only predicted by

the growth in the crowds’ attention and by past returns on Bitcoin; but because Bitcoin itself is

mostly explained by the rate of growth in the Google searches of the word Bitcoin, it seems that in

overall terms, also Litecoin is eventually an almost entirely attention-driven asset. Interestingly, there

is (especially under a DMS algorithm) little or no evidence of Litecoin being predicted by standard

equity finance factors.

Figure 5 shows the time series of probabilities of each predictor to be included across theQLitecoin =

131,072 models entertained in the paper. The plots confirm the intuition on ✓̂DMA

t+1|t expressed with

reference to Figure 5: although their dynamics over the 2013-2019 sample is heterogeneous, the

probabilities of models including lagged Bitcoin returns and the Litecoin Google search growth rate

cumulate very high probabilities, generally exceeding 0.70; however, in the case of lagged Bitcoin

returns, such probability is generally increasing over time, starting out at around 0.3 and reaching

1 by late 2016, while in the case of Google searches, these describe a “V”-shaped evolution, starting

out at 1, declining by late 2016 to almost zero, and then bouncing back to basically 1 by the end of

2017. All the other probabilities of inclusion are generally modest and oscillate between 0.20 and 0.40,

although many of them tend to climb up after 2017, which may be taken as evidence that Litecoin

returns tended to become increasingly predictable.
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Figure 6 shows times series plots for 15 out of the available 18 graphs for the recursive estimates

of ✓̂DMS

t+1|t for the Litecoin out-of-sample period July 2013 - January 2019. We include the estimated

constant ✓̂DMS

0,t+1|t but we exclude—because of space constraints—the graphs concerning the predictive

slope coe�cients for the value-weighted portfolio returns of electrical companies in China and the US.

In any event, these predictors are never selected by the DMS algorithm. As one would expect, the

patterns in Figure 6 closely mimic the probability ones in Figure 5 for the two predictors that enter

most often the selected models, i.e., lagged Bitcoin returns and the rate of growth of Google searches

of the word Litecoin.

4.3 Ripple

Figure 7 extends Figures 1 and 4 to the case of Ripple returns in showing the time series of ✓̂DMA

t+1|t for

the April 2015-January 2019 sample, while the top panel of Table 4 reports summary statistics. The

table shows that although its structure may be di↵erent, Ripple is characterized by the same level

of predictability vs. Litecoin. In fact, as in the case of Litecoin, also Ripple returns are forecast by

lagged Bitcoin returns, even though the associated coe�cients are relatively small. Even though the

related coe�cients all tend to be small at least in mean and median terms, in a few cases the empirical

90% confidence band fails to include zero: this happens for the returns on the size and quality factor

mimicking portfolios (with sensible, positive coe�cients), platinum spot returns (which turn out to

be a substitute for Ripple coins), the returns on a value-weighted portfolio of Chinese electric power

firms, and TSMC individual stock returns. In this case, investors’ attention in the form of Google

searches do not appear to predict Ripple returns, even though the delayed dependence of Ripple

returns on past Bitcoin returns does imply an indirect, persistent dependence on Google searches.

Yet Figure 7 shows that the slope coe�cients are all close to zero and relatively flat throughout

our sample. The only visible exceptions are 12-month own-momentum and the rate of growth of

internet searches of the word “Ripple”. Likewise, also because the corresponding values for the ✓̂DMA

t+1|t

coe�cients are generally small, it is di�cult to provide interpretation or account for stories underlying

the dynamics of the recursively estimated coe�cients in Figure 7. Not surprisingly in the light of

Table 4, SizeDMA

Bitcoin
= 4.38, which establish an unconditional level of model complexity similar to

Litecoin.17

17The DMA probabilities of inclusion of each predictor over time are tabulated in an Appendix available upon request
from the authors.
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These results—also because of their weakness—are largely over-turned by the findings in the

bottom panel of Table 4 and by Figure 8 concerning the DMS analysis: none of the predictors

consistently enters the best selected model so to end up delivering mean and median coe�cient

estimates that are essentially zero. In fact, we find that SizeDMS

Bitcoin
= 0.30, which means that on

average the best selected model just includes the constant, i.e., no predictability exists. The results of

DMS and DMA are consistent in the light of the recursively estimated coe�cients that are essentially

zero in Table 4.

4.4 Ethereum

Although on a rather short sample (2016-2019, for which we found su�cient liquidity and hence

reliability in the corresponding market), the empirical evidence concerning Ethereum is similar to

what we have unconvered in Section 4.3 with reference to Ripple returns. First, from Table 5, it

emerges that under DMA, even though the empirical 90 percent bands show some sign of resilient

predictability, this occurs with means and medians of the recursively estimated DMA coe�cients are

generally small, with the only partial exception of the Google search predictor, for which the mean

(median) coe�cient is 0.135 (0.158).18 Therefore, there is some predictability—Figure 9 shows that

this particularly visible in the first part of the sample, 2016-2017—for this crypto asset, but this

seems to mostly come from its media attention exposure, as already reported above. Our calculations

indeed reveal that SizeDMA

Ethereum
= 4.58. This is consistent with Figure 10, concerning the recursive

probabilities of inclusion of variables across DMA iterations, in which we note that—with the exception

of the two predictors mentioned above and, at least between 2016 and 2017, for the momentum and

SMB returns variables—all predictors imply probabilities that oscillate between 0.1 and 0.4 and that

fail to display any interpretable trends over out sample. Second, as shown in the bottom panel of Table

5, when a DMS algorithm is applied, little of the predictability of cryptocurrency returns uncovered

under DMA survives: as usual, only lagged Bitcoin returns and the rate of growth of Google search

sentiment remain estimated with robust and non-zero coe�cients (on average, these are 0.087 and

0.135, respectively, i.e., they remain rather modest, which is consistent with Drobetz et al., 2019 and

Li and Yi, 2019); di↵erently from previous cases (especially Ripple returns), Ethereum returns are also

predicted by silver spot and NVIDIA stock returns. More interestingly, Table 5 shows considerable

18Interestingly, Ethereum returns display a resilient, negative predictive loading on past returns on the factor-
mimicking portfolio representing size. A parallelism between the small-size cryptocurrency status of Ethereum and
small-size stocks is of course suggestive (Ethereum would be a substitute for small cap firms).
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variation over time of the models selected as the best one for forecasting purposes, even though—as

already emphasized—past Bitcoin returns and the rate of growth of Google searches tend to play a

prominent role. Consistently with this remark, we find SizeDMS

Ethereum
= 1.26.

4.5 The dynamics of residual variance

For the sake of completeness in the presentation of our recursive OOS results, for each cryptocurrency

return series, Figure 11 displays the recursively estimated time series of the DMA residual variances,
n
ĥj,DMA

t

oT

t=1
,19

ĥj,DMA

t+1 ⌘
Q

jX

l=1

⇡t+1|t,lĥ
j,DMA

t+1 (l) j = Bitcoin, Litecoin, Ripple, and Ethereum, (23)

for t = 0, 1,..., T � 1. For the portions of their respective estimation samples that the di↵erent

cryptocurrencies share, the series of residual EWMA variances are qualitatively similar: for instance,

between November 2013 and January 2019, ĥBitcoin,DMA

t+1 and ĥLitecoin,DMA

t+1 turn out to be rather

close, even though the former declines from about 2.5 to 0.2 percent per week, while the for the

latter cryptocurrency this takes place from a higher peak of 4 percent per week. Generally, Bitcoin

and Litecoin display declining residual variances after initial peaks, why Ripple and Ethereum both

features double initial peaks and then tame o↵ to 1 percent per week by the end of the sample.

Certainly, the early periods were characterized by rather unusual, unpredictable risks not explained

away by any of the prediction variables between 2011 and 2014, then declining to more normal levels of

0.5-1 percent per week. As it has been frequently discussed in the literature (see Chaim and Laurini,

2018)), crypto assets are certainly “special” in their elevated and jump-like volatility. Our analysis

confirms these more informal accounts but qualifies such risk as idiosyncratic within a predictive DMA

framework and is therefore novel.

4.6 What is the impact of DMA/DMS methods on what learn from the data?

Because the net contribution of our paper to the literature, especially compared to Liu and Tsyvinski

(2018), consists of the application of flexible averaging/selection forecasting methods to a subset of the

predictors for cryptocurrencies isolated by earlier research, we close this section by presenting some

19We have also computed DMS time series of residual variance that however lead to largely similar conclusions.
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evidence of the considerable impact of adopting simple recursive OLS instead of the DMA/DMS

methods employed so far in our paper. Figure 12, plots recursive OLS coe�cient estimates with

reference to Bitcoin returns, using the same left scales as Figure 1 did. Even a cursory comparisons

of Figures 1, 3, and 12 reveals that in the latter case, variation over time and even drifts in estimated

coe�cients appear that were completely missing in Figures 1 and 3 in which, in fact, most the flexible

DMA and DMS recursive estimates flat-line at zero for the largest part of our sample, especially

after late 2011. For instance, while in Figures 1 and 3, the estimated coe�cients associated to the

lagged spot gold return never significantly stray away from zero, Figure 12 shows (using the same

left-scale as Figures 1 and 3) sustained variation of the OLS estimates through early 2013, followed

by a smooth drift of the coe�cients from approximately -0.4 towards -0.2; interestingly, even by the

end of our sample, the recursive OLS fails to reach zero, which is instead typical of DMA and the only

value featured by the DMS forecast algorithm. As we shall comment in Section 5, such di↵erences vs.

standard, recursive OLS deliver realized OOS and economic value performances that substantially

di↵er from those of DMA/DMS.

To provide further corroborating evidence, with reference to Litecoin returns (arguably, the most

predictable among the cryptocurrencies), in Figure 13 we perform a direct, side-to-side comparison

of a few selected DMA coe�cient estimates with recursive OLS estimates. Although there are cases

in which the patterns are homogeneous (e.g., lagged bitcoin returns and SMB), in most plots the

recursive OLS estimates are characterized by higher variance and by a dynamics over time that is

rather di↵erent and of course will lead to di↵ering forecasts and portfolio decisions. In Figure 13,

the most glaring cases are o↵ered by the coe�cients associated to Gold returns and the Investment

factors, which display patterns of time variation under OLS that are largely disconnected from those

obtained under DMA.

5 Asset Pricing Implications

In this section we tackle the key research question of this paper, i.e., whether the empirical evidence

of predictability (or lack thereof) in the returns of cryptocurrencies may justify a claim that these

are segmented from more traditional asset classes. We articulate this argument along three main

sub-arguments. First, we examine whether and how crypto currencies imply a di↵erent recursive

dynamics of predictability relationships vs. traditional asset classes. Note that a di↵erent pattern of
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time variation may mean generally higher, lower, or simply di↵erent strength of any predictability

relationships. Therefore, the second test that we perform concerns whether DMA and DMS models

imply an overall amount of OOS predictability for cryptocurrencies that is significantly di↵erent from

that recorded for traditional asset classes. However, such tests are always performed under standard

loss functions, such as the squared loss that leads us to rank alternative models and to quantify OOS

predictability using mean squared forecast errors criteria. Therefore, as a third step, we embrace more

economically grounded loss functions and perform a simple and yet robust recursive mean-variance

asset allocation exercise to test whether the economic value generated from the predictability in

cryptocurrency returns may compare to that recorded for other, traditional asset classes.

5.1 Comparing the recursive dynamics of exposures to traditional asset classes

We have applied the same DMA and DMS techniques illustrated above also to data concerning returns

on US investment grade corporate bonds, US value-weighed equities, a MSCI value-weighted equity

index for developed markets (ex-US), the e↵ective US dollar nominal exchange rate vis-à-vis a basket

of other currencies, and gold spot prices. For each this large portfolios/asset classes, we have obtained

empirical results similar in structure to those reported for cryptocurrency returns in Tables 2-5 and

Figures 1-10.20 Because the amount of results to be reported for five additional portfolios appears

overwhelming and a number of the predictive factors have been selected from earlier literature on

cryptocurrencies but it does appear to be inspired by equity market research, in this section we have

opted to report results for US investment grade corporate bonds, for which the predictive power of

the factors may result to be more in line with what one would expect of cryptocurrency returns.

Figures 14 and 15 (as well as A3 in the Appendix) and Table 6 report results for US corporate

bonds in standard format, showing that the very variables that have been staked out to forecast

cryptocurrencies and, at least to some extent, stocks in past research, also carry some precision in

the prediction of investment-grade corporate bond returns. For instance, in Table 6, under DMA,

it turns out that all time-varying coe�cients are characterized by empirical 90 confidence intervals

that fail to include zero, which may be taken as an indication of precise estimation. Moreover, for all

of them, the sample mean and median of the estimated coe�cients carry identical sign, which is an

20Of course, momentum returns refer to the asset class under consideration, while the Google search variable measures
Bitcoin searches, because Bitcoin is the most popular (and capitalized) among the cryptocurrencies. To ensure full
consistency, we have also tried to use variables constructed after own Google searches for each asset class (like Guidolin,
Orlov, and Pedio, 2018) but found largely similar results.
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indication of them being well-behaved. In Tables 2-5, for cryptocurrencies, to find precise estimates of

predictive regression coe�cients had been almost the exception and not the rule. Under DMS, Table

6 shows that for seven predictors, the algorithm leads to their selection over time, while selection had

represented more the exception than the rule in the case of cryptocurrencies (with the only exception

of Litecoin).

Figure 14 shows much more variation of the DMA coe�cients over our sample vs. the typical

plots in Figures 1-10: especially the thicker lines in the plots are expressed on comparable, adjusted

scales and while especially Figures 6, 7, and 9 had been dominated by flat lines, this is hardly the

case in Figure 14. Figure 15 shows probability of DMA algorithm-driven inclusion of predictors that

systematically exceeds 0.5 in the case of the US electricity stock portfolio index up to early 2014

and of lagged platinum returns after the end of 2015. The comparable Figures 2, 5, and 10 (and

others available in an on-line appendix) do show occasional patterns of inclusion in excess of 0.5, but

only when cryptocurrency specific variables are used to predict subsequent crypto returns; moreover,

while in these figures the majority of the plots show average probabilities of inclusion that often fall

towards zero, this is never the case for US corporate bonds. All in all, even though most of the

di↵erences that we have discussed appear to be of a qualitative type and are hardly formalized, it

seems that even though our empirical exercise was hardly rigged in favor of traditional asset classes

and against finding predictability in cryptocurrency returns, the data reveal that the same variables

appear to have a easier time forecasting other types of returns, as the next section proceeds to formally

quantify. Importantly, these results can be extended to both US and international stock returns as

well as to gold and Figures 14-15 and Table 6 should be taken as examples. Although the plots and

complete, tabulated results for gold have been dropped to save space but are available upon request,

the finding that cryptocurrencies are less predictable than gold is of some interest. Often, at least in

a fraction of the public commentaries on the nature of cryptocurrencies (see, e.g., Dyhrberg, 2016a;

Wu et al., 2019), these have been compared to gold and other precious metals; our results show that

such suggestions may be void of empirical content, at least as far as the predictability space goes,

similarly to the key conclusion by Klein et al. (2018).
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5.2 Are Cryptocurrencies just another currency?

An important, additional test is based on assessing whether cryptocurrencies are eventually just

an alternative means of payment that di↵er from typical asset classes, such as stocks and bonds.

Therefore, the specialty of cryptocurrency and possibly their segmentation from remaining asset

classes can be best established by a comparison with the predictability patterns revealed by the US

dollar exchange rate. Therefore we obtain data on the US dollar e↵ective exchange rate (i.e., the

trade-weighted exchange rate of the US dollar against a subset of major currencies that include the

Euro, Canada, Japan, United Kingdom, Switzerland, Australia, and Sweden) for a Jan. 2011 - Jan.

2019 sample, similarly to Bitcoin data. The logic is that in the same way in which cryptocurrency

returns measure relative percentage changes in the value of a cryptocurrency vis-a-vis the US dollar,

the log changes in the e↵ective nominal exchange rate of the US dollar measure the relative changes of

its value vis-a-vis foreign currencies. Although in Table 1 we may notice that the 0.071 Sharpe ratio

characterizing a long-short position in US dollars vs. a basket of other currencies is inferior to that

typical of cryptocurrencies, Table 7 and Figure 16 (as well as Figures A4 and A5 in the Appendix) show

that—even using predictor variables that are hardly optimized to be consistent with the exchange

rate literature—there is considerably more predictability in US dollar log-changes vs. what we have

reported for cryptocurrencies. In Table 7, all predictors but bitcoin momentum imply empirical 90%

confidence interval for the DMA coe�cients that fail to contain zero; in the case of DMS estimates,

11 coe�cients give signs of accurate and persistent inclusion in the predictive relationship. In Figure

16, there is visible evidence, especially in comparison to Figures 1, 7, and 9 (Litecoin provides some

intermediate grounds), of some forecasting power of our selected predictors for the trade-weighted

value of the US dollar. In particular, SMB, silver, and electricity stock returns are characterized by

time-varying coe�cients that seem to capture pockets of predictability.21

5.3 Comparing the OOS realized predictive performance to traditional asset classes

In this section, we systematically compute and record the OOS realized forecasting performance of

alternative models for di↵erent asset classes, with the di↵erential performance across cryptocurrencies

and other asset classes in the spot light. Table 8 provides the crucial piece of evidence in this paper

21In Figure A4, we obtain ex-post DMA evidence of high (exceeding 0.6) and time-varying probability of inclusion for
the SMB, HML, stock momentum, platinum, silver, and especially technology stock returns.

27



and it is organized as follows. The upper panel concerns crypto returns and, for comparison, the

lower panel the other asset classes investigated so far, including international and US stocks and

gold. In this regard, we caution against the heterogeneity of the samples available, even though all

recursive OOS forecasts for the benchmarks have been obtained on a sub-sample identical to that

for Bitcoin, July 2011 - January 2019. This implies that strictly speaking, the results are perfectly

comparable only when Bitcoin is involved.22 All models are initialized on a 6-month weekly sample

of observations. Table 8 has four blocks of results concerning four alternative prediction strategies:

naive, recursive OLS; recursive OLS based on the full-sample best individual predictor, that is also

listed in the table; DMA; DMS.23 For each model, we report two measures of OOS predictive accuracy,

i.e., the root mean-squared forecast error (RMSFE) defined in the conventional way and the OOS

R-square, defined as:

R2
OOS(j,M) ⌘ 1�

P
T

t=Pj+1(rj,t+1 � r̂M
j,t+1|t)

2

P
T

t=Pj+1(rj,t+1 � r̄j,t+1|t)2
= 1� MSFE(j,M)

MSFE(j,mean)
, (24)

where j refers to the asset class or cryptocurrency under consideration, M is one of the four predictive

frameworks under consideration, and Pj denotes the end of the estimation sample for each potential

j. Clearly, R2
OOS

(j,M) S according to whether MSFE(j,M) R MSFE(j,mean) so that a negative

R2
OOS

(j,M) is not only possible, but also highly meaningful: R2
OOS

(j,M) < 0 occurs when a given

forecasting model cannot manage to outperform the sample mean based on the naive expanding

sample forecast

r̄j,t+1|t =
1

t

tX

⌧=1

rj,⌧ . (25)

Of course, compared to the (square root of the) MSFE for a model, R2
OOS

(j,M) can be more infor-

mative by providing a signed, relative measure. Finally, in Table 8, for each currency or asset class,

we have emphasized in boldfaced the model with the highest R2
OOS

(j,M) and the lowest RMSFE,

although we must immediately caution that in a few cases, such a R2
OOS

(j,M) turns out to be nega-

tive, indicating that none among the four predictive models under analysis manages to outperform a

22In the case of Ripple and Etheurem, the OOS back testing occurs on relatively short-subsamples (starting in Oct.
2015 and Jan. 2017, respectively), and applying them to Bitcoin and Litecoin returns would have implied a massive loss
of information that we deemed to be unacceptable.

23Recursive OLS forecasts based on the full-sample best individual predictor are not true OOS forecasts because they
could not have been implemented in real time, as they are based on a selection of predictor that becomes available
only as of January 2019. We have purposefully specified this unfeasible predictive model to provide a quantitative
indication of what is the best predictive power of simple OLS with our data. Unsuprisingly, in the case of three of the
four cryptocurrencies, the best OLS predictor is the rate of growth in the crypto-specific Google searches.
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simple, recursively updated historical average.

The message of Table 8 is stark: with the exception of Litecoin that keeps o↵ering a bit of a puzzle,

all other cryptocurrencies—and markedly, Bitcoin among them—are considerably less predictable

than other, more traditional asset classes are. As already commented in the Introduction, while on

the one hand this suggests great caution when cryptocurrency investments are approached, on the

other hand it provides considerable evidence of their segmentation, of their being di↵erent from all

other asset classes under consideration. Leaving Litecoin aside, the best R2
OOS

for a cryptocurrency is

1.1 percent (Ethereum, from a DMS framework), while the two other top R2
OOS

are in fact negative;

on the opposite, all remaining asset classes are characterized by R2
OOS

s that range between 0.3 (the

US exchange rate) and a rather large 6.2 percent (investment grade US corporate bonds). Moreover,

with only two exceptions, out of nine currencies/asset classes covered by Table 8, in seven cases, it is

DMS that provides the most accurate OOS forecasting performance, probably as one would expect

given the parsimonious nature of the algorithm; in the other two cases, the best R2
OOS

is provided by

the unfeasible recursive OLS model (for Ripple returns, but DMS ranks second with a negative R2
OOS

of -6.9%) and by DMA (for gold returns).

5.4 Comparing realized OOS portfolio performance with and without cryptocur-

rencies

As it is well known, assessing the predictability of asset returns under classical, statistical loss functions

may turn out to be excessively remote when compared to the typical usage of these very forecasts

in financial decisions, such as trading, portfolio allocation, and risk management, see e.g., Leitch

and Tanner (1991). In fact, a number of papers (see, e.g., Cenesizoglu and Timmermann, 2012 and

Dal Pra et al., 2018) have emphasized that often the typical statistical loss functions used in much

research on predictability may reveal weak forecasting power that is able to generate substantial OOS,

realized economic value under commonly used trading and asset allocation strategies based on the

maximization of performance criteria and expected utility functions that are equally widespread in

financial economics. With economic value, we refer to the fact that enriched asset menus (for instance,

to include alternative asset classes) or more sophistical asset allocation methods ought to lead to

superior OOS performances, for instance in terms of realized certainty equivalent returns, Sharpe

ratios, and better higher-order properties of portfolio returns (skewness and kurtosis). The potential
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of a divergent informative content of statistical vs. economically grounded loss functions clearly

represents an issue for our research design that has been so far based on statistical loss functions

only. As a result, in this section we proceed to extend our earlier empirical evidence to a simple,

representative portfolio problem to test whether exploiting the scant predictability in cryptocurrency

returns may generate any economic value. If cryptocurrencies were segmented from all other asset

classes—hence not (or less) predictable using standard variables and methodologies—we expect to

hypothesis not to be rejected in our empirical experiments:

1. Accounting for any predictability in recursive, OOS portfolio strategies (as opposed to not

exploiting any forecasting power from standard predictors) ought to generate small or even

non-positve economic value in asset menus that include cryptocurrencies, besides cash, bond,

stocks, and gold.

2. However, just because cryptocurrencies are segmented from all other asset classes, even (or

especially) ignoring any predictability, their inclusion in the asset menu in addition to traditional

assets classes ought to create substantial and, in any event, positive economic value.

Our portfolio allocation design is rather typical of the literature, see e.g., Barberis (2000) and

Guidolin and Timmermann (2007). We model a US investor who, starting from unit wealth and in

the presence of no-short sale constraints, maximizes expected power utility by selecting at weekly

frequency the portfolio weights to be assigned to the N assets in the asset menu she faces:

max
!t

EM
t

"
W 1��

t+1

1� �

#
(� 6= 1) s.t. Wt+1 =

NX

j=1

!j,t(rj,t+1�rf,t+1)+(1+rf,t+1), !n,t 2 [0, 1]. (26)

In problem (26), rf,t+1 is the riskless, cash rate known at time t and the conditional expectation of the

one-week ahead utility is computed by an IID bootstrap of the empirical distribution of the data up

to time t, under a given prediction model M.24 For instance, under DMA, we shall have Wt+1(!t) ⇠
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t+1|t )!t is the N ⇥N covariance matrix of the

24Because we impose on the shape of the empirical distribution of the data, means, variance and covariances that are
a↵ected by the selected model M, this IID bootstrap scheme to optimize portfolio weights is also known as a filtered
historical simulation approach. In our view, in the presence of the massive deviation from normality characterizing the
returns on cryptocurrencies, any other parametric approach to optimal asset allocation would be of dubious applicability.
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forecast errors from the DMA model.25

We recursively solve (26) using standard constrained optimization methods in Matlab over the

same OOS period used already in Section 5.2. With reference to such OOS period, we compute and

report two measures of realized, risk-adjusted portfolio performance, the certainty equivalent return

(CER) associated to the recursive solution of (26),
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where the OOS for the asset menu characterized by N assets starts at PN + 1 and the notation

CER(M, N) emphasizes that this the CER computed under the forecasts from model M for asset

menu N , and the standard Sharpe ratio,
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Of course, the standard caution that only the CER is really meaningful when portfolio weights have

been optimized under (26) also applies in this case, when asset returns are highly non-normal. How-

ever, reporting and commenting Sharpe ratios seems to be a common practice, especially in the

industry, and so we also follow this custom here. In practice, we consider three alternative values

of the coe�cient of constant relative risk aversion � (i.e., 3, 8, and 15) and three alternative asset

menus, which correspond to six distinct experiments:

1. A first menu characterized by N1 = 5 risky assets, i.e., US stocks, World developed markets

stocks (ex-US), US investment grade corporate bonds, gold, and long-short position in US

dollars vis-a-vis a trade-weighted basket of other major currencies.26 Of course these are the

five classical assets that we have considered in Section 5.1, when performing comparisons between

the predictability patterns of cryptocurrencies and other asset classes. The portfolio calculations

are performed under DMA, DMS, and when there is no predictability and returns are simply

predicted by their historical sample means.

25Because we are considering the conditional, one-step ahead distribution of wealth, this is the relevant definition of
covariance for our problem, see Campbell et al. (2004).

26Because we assume that the short position is 100 percent covered by depositing cash, we impute on the long-short
exchange rate the same cost in terms of committment of available wealth as other assets/strategies.
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2. A second menu identical to the first, but expanded to include Bitcoin, so that N2 = 6; even

though this second asset menu just includes one cryptocurrency only, this is the most famous

and by far the most actively traded (to the point of acting as a medium of exchange and

currency conversion for other, minor crypto assets) that therefore allows us to apply our OOS

portfolio tests to a relatively long July 2011 - January 2019 sample. The portfolio calculations

are performed under DMA, DMS, and when there is no predictability and returns are simply

predicted by their historical sample means. A comparison of the CERs and Sharpe ratios of

this asset menu vs. N1 = 5 delivers an estimate of the economic value of adding Bitcoin to an

otherwise traditional asset menu; a comparison of CERs and Sharpe ratios for N2 = 6 provides

instead an estimate of the economic value of capturing predictability when Bitcoin belongs to

the asset menu.

3. A third asset menu, that further expands the second to include all cryptocurrencies, i.e., N3 = 9;

on the one hand, in the light of the goals of our paper, this expansion of the asset menu seems

natural; on the other hand, this implies a remarkable cost in terms of length of the feasible OOS

period, that indeed shrinks to 108 weeks only, January 2017 - January 2019, which is forced

upon us by the limited data availability of Ethereum returns. A comparison of the CERs and

Sharpe ratios of this asset menu vs. N1 = 5 delivers an estimate of the economic value of adding

all cryptocurrencies to an otherwise traditional asset menu; a comparison of CERs and Sharpe

ratios for N3 = 9 provides instead an estimate of the economic value of capturing predictability

when all cryptocurrencies jointly belong to the asset menu; finally a comparison of the CERs

and Sharpe ratios of this asset menu vs. N2 = 6 delivers an estimate of the economic value of

adding Ethereum, Litecoin, and Ripple to an asset menu that includes only Bitcoin, which is

another interesting question.

With reference to the case of � = 3, Table 9 provides preliminary evidence on our dynamic

portfolio exercises by reporting the customary set of summary statistics concerning optimal portfolio

weights for the three asset menus described above.27 The table is organized in three panels, devoted

to results obtained under DMA, DMS, and using historical sample means, respectively. When no

cryptocurrencies are available, under DMA and DMS, wealth is on average invested across all asset

classes, with a slight prevalence of cash and investment-grade corporate bonds, even though also US

27Tables A1 and A2 in the Appendix describe the empirical results for the cases of � = 8 and 15 but are qualitatively
similar, apart from the obvious finding that the optimal asset allocations in this cases are tilted away from risky assets
and towards cash.
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and global equities are demanded on average (about 15%), even though their demand is weaker, as

shown by median statistics. However, when predictability is ignored, only corporate bonds enter the

optimal portfolio. When bitcoin is added to the choice menu, the e↵ects turn out to be considerably

dependent on whether predictability or not is accounted for. Under DMA and DMS, Bitcoin enters

with a weight between 12 and 21 percent, when simple historical means, variances, and covariances

are considered, then the demand for bitcoin jumps to 62% on average (the median is 73%) and the

rest is invested in US corporate bonds. This asset allocation is clearly unrealistic and yet its OOS

economic value remains to be assessed. Finally, when all cryptocurrencies are made available to our

representative investor—although only for the shorter 2017-2019 sample—we find that all allocations

become heavily tilted towards crypto assets (in particular Bitcoin and Litecoin under DMA and

DMS, Ripple when only historical moments are taken into account) and away from cash that appears

to be completely “crowded out” by block-chain based payment methods; rather awkwardly, most

(all, under historical moments) demands of stocks and bonds disappear, leading to less realistic and

well-diversified portfolio allocations.

Just because the resulting average and median asset allocations appear to be quite unbalanced

when predictability is ignored, it is imperative to check their resulting OOS realized portfolio per-

formances, which is what Table 10 performs for � = 3, 8, and 15. In the first case, which directly

matches the results in Table 9, we observe that while ignoring predictability leads to the highest—

albeit rather puny (0.041% per week)—CER, it is predictability, as flexibly captured by DMA, that

leads to the highest economic value, with CERs between 0.091 and 0.207% per week, which are far

from negligible. Moreover, the highest economic value of historical mean estimates comes from its

superior higher-order moment properties, in the sense that it yields to systematically lower kurtosis

(and essentially zero skewness) vs. DMA and DMS, while the two latter models guarantee higher

realized mean returns and Sharpe ratios in each experiment/asset menu. For each asset menu, the last

column of Table 10 estimates the value of predictability by comparing the CER when predictability

is ignored vs. the highest CER between DMA and DMS. For a standard asset menu that ignores

predictability, and consistently with earlier literature (see Goyal and Welch, 2007, Rapach et al., 2010

and the review by Rapach and Zhou, 2013), the value of such predictability turns out to be negative,

-0.081% per week, i.e., an investor ought to be ready to pay to avoid accounting for the (modest)

forecasting power discussed in Section 4. However, when cryptocurrencies are brought into the asset

menu, the resulting economic value turns positive, although rather low, 0.014% when only Bitcoin
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is inverstable and 0.039% when all cryptocurrencies are available. These are incremental CERs of

between 0.6 and 2% per year that appear to be close (or even below) plausible measures of transaction

costs that may be involved in our trading strategy and that we have ignored for simplicity. Moreover,

finding that the predictability of cryptocurrencies was elusive (absent) under standard, statistical loss

functions such as MSFE and modest under economic loss functions is generally expected, as the two

types of loss functions are generally imperfectly aligned in many financial applications.

Table 10 also allows to compute an estimate to the question that is central to this paper, i.e., what

is the value of a seemingly segmented asset—cryptocurrencies, at least in a predictive framework—in

an asset management perspective. By taking the di↵erence between the highest CER when crypto

assets are included in the asset menu (N2 = 6 and N3 = 9) and the highest CER under the baseline

menu (N1 = 5), we find an increase in CER of 0.166% per week, i.e., a rather hefty 8.3% per year.

Yet, as we would expect on the basis of earlier results, if one takes the di↵erence under the case

of no predictability between the highest CER when crypto assets are included in the asset menu

and the highest CER under the baseline menu, we find an increase of CER due to the inclusion of

cryptocurrencies in the asset menu that equals 0.091% per weak, i.e., more than half of the 8.3%

does not depend on the application of DMA and DMS models.28 Although we have computed our

recursive optimal portfolios by maximization of expected power utility, Table 10 also shows that the

inclusion of cryptocurrencies into the asset menu systematically increased the realized, OOS Sharpe

ratios vs. the baseline N1 = 5: the best achievable weekly SR index climbs from 0.169 to 0.186 when

Bitcoin is added to the asset menu, and then to 0.265 when all cryptocurrencies are considered (even

though on a shorter sample, so that comparability is limited).29

Finally, the intermediate and top panel of Table 10, report results for the cases of � = 8 and

15. Results are qualitatively similar, even though in the case of � = 8 results are starker in the

sense that ignoring the predictability of cryptocurrencies simply increases CER vs. DMA and DMS.

Once more, this caused by the reduced kurtosis of strategies simply based on historical moments

that imply excessively large portfolio returns only in rare occasions. In fact, while in overall terms,

cryptocurrencies carry a rather modest economic value (0.065% per week), when predictability is

28All of the overall economic value of cryptocurrencies derives from the ability to hold Bitcoin, but when predictability
is not taken into account, the value of Litecoin—being the most forecastable asset—is important and as such the increase
in CER deriving from Bitcoin holdings only is a meager 0.036% per week.

29These weekly SR are rather considerable when annualized by simply multiplying by
p
52, ranging between 1.2 and

1.9. However, such an operation is of dubious nature because the data display features that starkly contrast with their
independent and identical distribution over time.
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ignored, this increases to 0.253% per week, which is almost 13% per year. Under � = 15, we find that

predictability has positive economic value (up to 0.212% per week) but that once more cryptocurren-

cies are more valuable when predictability is ignored (0.227% per week) than when it is taken into

account (0.124%). Interestingly, one can easily check that in the case of � = 8 and 15 the incremental

CER recorded for crypto assets derives in a predominat portion from the ability to hold Bitcoin.

Therefore, for aggressive, relatively non-risk averse investors, predictability is less important vs. the

case of more risk-averse investors and the former care more than the latter to get access to more

volatile, speculative cryptocurrencies such as Litecoin and Ripple, that are in fact also more easily

predictable.30

6 Conclusion

In this paper we have investigated whether and how cryptocurrencies may represent a new asset

classes segmented—i.e., with di↵erent statistical properties in a linear space—from traditional asset

classes. We have done that using an exquisitely forecasting, flexible approach in which—given a set of

plausible predictive variables drawn from earlier literature on the asset pricing of cryptocurrencies—we

ask whether the patterns, the strength, and the economic value of any predictability characterizing

cryptocurrency returns may di↵er from that typical of traditional asset classes. Our approach is

flexible because it is based on the dynamic model averaging and dynamic model selection approach

by Raftery et al. (2010) and popularized in macroeconomics by Koop and Korobilis (2012): instead

of simply performing recursive OLS estimation of linear predictive models with fixed predictors, we

allow the data—through the use of Bayes’ formula and a few carefully selected approximations—to

either recursively re-weight the forecasting variables to used in the model or to select which variables

ought to be dynamically included in the model. Finally, we measure economic value through standard

recursive asset allocation exercises in which a US investor maximized expected power utility across

alternative asset menus—with and without cryptocurrencies—and predictability models, including a

sample historical mean benchmark that does not feature any predictability of asset returns. As argued

in the paper, the goal of such exercises—although potentially appealing by itself to Readers coming

from the field of applied portfolio management—is ensure adequate robustness to the selection of

30Although the nature of the estimation is questionable in the light of the features of the asset allocation problem we
have tackled, also for � = 8 and 15, we find that the maximum SR monotonically increases as additional cryptocurrencies
are added to the asset menu.
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specific statistical loss functions, that remains a tricky choice in all research designs based on relative

forecasting power.

We find evidence that cryptocurrencies do represent a new asset classes, substantially segmented

from traditional asset classes. Cryptocurrency appear to be: (1) characterized by returns that are less

predictable on average when compared to other asset classes, including gold and the external, trade

value-weighted US dollar;31 (2) characterized by returns that can be forecasted according to patterns

and with a measurable degree of time variation that di↵er from most other asset classes, including gold

that has been often indicated as the most closely related asset class; (3) able to generate considerable,

realized OOS economic value (especially when measured in terms of ex-post Sharpe ratios) when

they are added to otherwise traditional asset menus of cash, corporate bonds, US and international

stocks, and long-short exchange rate positions; (4) unable to o↵er much advantage in terms of realized,

risk-adjusted portfolio performances deriving from any predictability patterns characterizing them;

(5) not reducible only to Bitcoin, in the sense that also Ethereum, Litecoin, and Ripple appear to

generate substantive OOS realized economic value when they are added to Bitcoin, also because

they o↵er diversification benefits vs. Bitcoin returns; because diversification benefits play a role of

increasing importance as investors become more risk-averse, we find stronger evidence of the value of

cryptocurrencies not being subsumed by Bitcoin when � = 15, the highest risk aversion coe�cients

entertained in our exercise.32
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Table 1 

Summary Statistics 
The statistics are based on weekly data, expressed in US dollars. All commodity and foreign stock returns are expressed in US dollars. The 
interquartile range is defined as the difference between the 75th and the 25rh sample percentiles. Excess kurtosis is defined as sample kurtosis 
minus 3. The Sharpe ratio is computed with reference to the weekly yields of US 30-day T-bills. 
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Table 2 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Bitcoin Returns 

The statistics are based on weekly data, expressed in US dollars. The percentile statistics are 
across time and probability-weighted within time periods. We have boldfaced pairs of 5th-95th 
empirical percentile statistics that fail to include zero, which implies that in overall terms 
(under the assumption of independence over time), the series of recursively estimated slopes 
are statistically significant at a 10% size. 
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Table 3 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Litecoin Returns 

The statistics are based on weekly data, expressed in US dollars. The percentile statistics are 
across time and probability-weighted within time periods. We have boldfaced pairs of 5th-95th 
empirical percentile statistics that fail to include zero, which implies that in overall terms 
(under the assumption of independence over time), the series of recursively estimated slopes 
are statistically significant at a 10% size. 
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Table 4 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Ripple Returns 

The statistics are based on weekly data, expressed in US dollars. The percentile statistics are 
across time and probability-weighted within time periods. We have boldfaced pairs of 5th-95th 
empirical percentile statistics that fail to include zero, which implies that in overall terms 
(under the assumption of independence over time), the series of recursively estimated slopes 
are statistically significant at a 10% size. 
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Table 5 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Litecoin Returns 

The statistics are based on weekly data, expressed in US dollars. The percentile statistics are 
across time and probability-weighted within time periods. We have boldfaced pairs of 5th-95th 
empirical percentile statistics that fail to include zero, which implies that in overall terms 
(under the assumption of independence over time), the series of recursively estimated slopes 
are statistically significant at a 10% size. 

 
  



 45 

Table 6 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Investment Grade US Corporate Bond Returns 

The statistics are based on weekly data, expressed in US dollars. The percentile statistics are 
across time and probability-weighted within time periods. We have boldfaced pairs of 5th-95th 
empirical percentile statistics that fail to include zero, which implies that in overall terms 
(under the assumption of independence over time), the series of recursively estimated slopes 
are statistically significant at a 10% size. 
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Table 7 

Summary Statistics for Recursively Estimated DMA and DMS Predictive Regression 
Coefficients: Log Changes of the US Dollar Trade-Weighted Exchange Rate 

The statistics are based on weekly data. The percentile statistics are across time and 
probability-weighted within time periods. We have boldfaced pairs of 5th-95th empirical 
percentile statistics that fail to include zero, which implies that in overall terms (under the 
assumption of independence over time), the series of recursively estimated slopes are 
statistically significant at a 10% size. 
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Table 8 

Recursive Out-of-Sample Realized Forecasting Performances of Alternative Models 
The table reports two indicators of realized, OOS predictive accuracy: the root mean-squared forecast error and the OOS R-square. Four alternative 
forecasting models are compared, recursive OLS including all predictors jointly, (unfeasible) recursive OLS based on the best , full-sample predictor 
(that is also reported in the table), dynamic model averaging, and dynamic model selection. For each cryptocurrency/asset class, we have boldfaced 
the model yielding the lowest RMSFE and OOS R-square across the four predictive frameworks. When the best achievable OOS R-square is negative 
(an indication that a model cannot outperform the sample mean), it has been emphasized using boldfaced red. The recursive, expanding window 
OOS experiments are applied to the available sample after initializing the recursive estimated on the basis of 26 initial observations. 
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Table 9 

Summary Statistics for Recursive, Expected Power Utility (𝜸 ൌ 𝟑) Portfolio Weights 
The statistics are based on recursive, weekly optimized weights from a power utility with 𝛾 ൌ 3. 
The percentile statistics are across time. A ǲ̴̴̴ǳ indicates that the asset was never demanded. 
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Table 9 (continued) 

Summary Statistics for Recursive, Expected Power Utility (𝜸 ൌ 𝟑) Portfolio Weights 
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Table 10 

Realized Performance of Recursive, Expected Power Utility Portfolio Weights 
For three alternative values of the coefficient of relative risk aversion and three alternative 
asset menus/sample sizes, the table reports realized performance measures for optimal 
portfolio weights derived from the maximization of expected power utility. All measures are 
reported on a weekly basis. For each asset menu, the last column computed the weekly fee 
(economic value) that an investor ought to be ready to pay to switch out from a recursive 
strategy based on historical moments into DMA/DMS strategies that exploit predictability from 
a given set of predictors. 

Mean Volatility
Sharpe 

ratio Skewness Kurtosis
Realized avg. 

utility CER
Value of 
Predict.

DMA 0.0073 0.1985 0.0360 -0.1738 12.9479 -1.5951 -0.0401
DMS 0.0362 0.2136 0.1687 1.8553 16.1019 -11.1165 -0.3879
Historical Moments 0.0323 0.2055 0.1563 -0.1091 4.3276 -0.5652 0.0406 -0.0807

DMA 0.0184 0.1981 0.0922 0.2105 9.6490 -1.0479 0.0908
DMS 0.0421 0.2260 0.1857 1.7777 14.2805 -9.4896 -0.3705
Historical Moments 0.0164 0.1565 0.1043 0.3596 5.0106 -0.5245 0.0764 0.0144

DMA 0.0711 0.2806 0.2531 3.4361 16.4236 -0.4935 0.2066
DMS 0.0871 0.3287 0.2647 4.1405 23.3581 -0.5119 0.1883
Historical Moments 0.0153 0.2132 0.0714 2.2090 8.7942 -0.5341 0.1676 0.0390

DMA 0.0033 0.0979 0.0329 -0.4054 12.8984 -0.5113 0.1835
DMS 0.0204 0.1307 0.1549 2.2960 18.2336 -0.5040 0.1852
Historical Moments 0.0323 0.2055 0.1563 -0.1091 4.3277 -5.2663 -0.0027 0.1879

DMA 0.0121 0.1492 0.0803 -0.2103 8.8387 -10.0298 -0.0552
DMS 0.0288 0.1535 0.1867 1.2436 12.8310 -2.7433 0.0556
Historical Moments 0.0210 0.1561 0.1336 0.0096 4.1684 -0.4463 0.2498 -0.1942

DMA 0.0635 0.2777 0.2282 3.2969 16.4554 -0.3177 0.1921
DMS 0.0890 0.2757 0.3222 2.6509 12.7519 -0.3192 0.1915
Historical Moments 0.0160 0.2154 0.0736 2.1118 8.4650 -0.2794 0.2086 -0.0165

DMA 0.0012 0.0552 0.0189 -0.5093 13.1589 -0.1872 0.2335
DMS 0.0111 0.0738 0.1482 2.1635 18.5226 -0.1854 0.2341
Historical Moments 0.0321 0.2049 0.1559 -0.1139 4.3369 -16.2692 -0.0778 0.3119

DMA 0.0067 0.0953 0.0688 -0.6730 8.0138 -2.9381 0.1668
DMS 0.0181 0.0941 0.1909 1.8674 15.0699 -0.4139 0.2821
Historical Moments 0.0247 0.1582 0.1552 -0.0227 3.9987 -16.3292 0.0784 0.2036

DMA 0.0563 0.2344 0.2396 3.2218 16.9876 -0.6127 0.2577
DMS 0.0822 0.2316 0.3546 1.6739 7.6092 -0.7038 0.2492
Historical Moments 0.0168 0.2096 0.0798 1.7699 6.9814 -0.7088 0.1488 0.1089

Baseline + All 
Crypto (2017-2019)

J   3

J   �

J   15

Baseline                
(2011-2019)

Baseline + Bitcoin 
(2011-2019)

Baseline + All 
Crypto (2017-2019)

Baseline                
(2011-2019)

Baseline + Bitcoin 
(2011-2019)

Baseline                
(2011-2019)

Baseline + Bitcoin 
(2011-2019)

Baseline + All 
Crypto (2017-2019)
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Figure 1 

Recursive Dynamic Model Average Coefficient Estimates for Bitcoin Returns 
The thicker (black) line reports the recursive estimates on a fixed scale [-2, 2] marked on the 
left axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 2 

Recursive Dynamic Model Average Probability Estimates for Bitcoin Returns 
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Figure 3 

Recursive Dynamic Model Selection Coefficient Estimates for Bitcoin Returns 
The thicker (black) line reports the recursive estimates on a fixed scale [-2, 2] marked on the 
left axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 4 

Recursive Dynamic Model Average Coefficient Estimates for Litecoin Returns 
The thicker (black) line reports the recursive estimates on a fixed scale [-2, 2] marked on the 
left axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 5 

Recursive Dynamic Model Average Probability Estimates for Litecoin Returns 
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Figure 6 

Recursive Dynamic Model Selection Coefficient Estimates for Litecoin Returns 
The thicker (black) line reports recursive estimates on a fixed scale [-0.5, 1.1] marked on the 
left axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 7 

Recursive Dynamic Model Average Coefficient Estimates for Ripple Returns 
The thicker (black) line reports recursive estimates on a fixed scale [-6, 1.5] marked on the left 
axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 8 

Recursive Dynamic Model Selection Coefficient Estimates for Ripple Returns 
The thicker (black) line reports recursive estimates on a fixed scale [-6, 1.5] marked on the left 
axis, the lighter (blue) curve concerns estimates on a variable (right) scale to enhance 
readability. 
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Figure 9 

Recursive Dynamic Model Average Coefficient Estimates for Ethereum Returns 
The thicker (black) line reports estimates on a fixed scale [-7.4, 0.8] marked on the left axis, the 
lighter (blue) curve concerns estimates on a variable (right) scale to enhance readability. 
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Figure 10 

Recursive Dynamic Model Average Probability Estimates for Ethereum Returns 
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Figure 11 

Recursive Dynamic Model Average Coefficient Estimates for the Variance of Residuals 
The color-coded shapes at the bottom of the horizontal axis show the sub-samples covered by 
the Litecoin, Ripple, and Ethereum plots for Bitcoin; by the Ripple and Ethereum plots for 
Litecoin; by the Ethereum plot in the case of Ripple. 
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Figure 12 

Recursive OLS Coefficient Estimates for Bitcoin Returns 
The thicker (black) line reports the estimates on a fixed scale [-2, 2] marked on the left axis, the 
lighter (blue) curve concerns estimates on a variable (right) scale to enhance readability. 
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Figure 13 

Comparison of Recursive DMA and OLS Coefficient Estimates for Litecoin Returns 
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Figure 14 

Recursive DMA Coefficient Estimates for US Investment Grade Corporate Bonds 
The thicker (black) line reports estimates on a fixed scale [-0.6, 0.5] marked on the left axis, the 
lighter (blue) curve concerns estimates on a variable (right) scale to enhance readability. 
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Figure 15 

Recursive Dynamic Model Average Probability Estimates for US Investment Grade 
Corporate Bonds Returns 
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Figure 16 

Recursive Dynamic Model Average Estimates for VW Dollar Exchange Rate Returns 
The thicker (black) line reports the estimates on a fixed scale [-0.8, 1.2] marked on the left axis, 
the lighter (blue) curve concerns estimates on a variable (right) scale to enhance readability. 
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