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Abstract 
 

We report systematic, out-of-sample evidence on the benefits to an already well-diversified 
investor that may derive from further diversification into various hedge fund strategies. We 
investigate dynamic strategic asset allocation decisions that take into account investors’ 
preferences, realistic transaction costs, return predictability, and the parameter uncertainty 
that such predictability implies. Our results suggest that not all hedge fund strategies 
benefit a long-term investor who is already well diversified across stocks, government and 
corporate bonds, and REITs. However, when parameter uncertainty is accounted for, the 
best performing models offer net positive economic gains to investors with low and 
moderate risk aversion. Most of the realized economic value fails to result from a mean-
variance type enhancements in realized performance but comes instead from an 
improvement in realized higher-moment properties of optimal portfolios. 
 
Keywords: Strategic asset allocation, hedge fund strategies, predictive regressions, out-of-
sample performance, certainty equivalent return. 
JEL classification: G11, G17, G12, C53. 

 

                                                        
* The authors are solely responsible for any errors or omissions. The views expressed herein are those of 
the authors and do not necessarily reflect the views of the Commission or the authors’ colleagues on the 
staff of the Commission. We thank session participants at the EFA 2018, at the EFMA 2019 conferences, at 
the 1st Bristol Financial MarketsConference in October21, the University of Liverpool Management School, 
and in particular Dimitris Papadimitriou and Bakhteat Talukdar (two discussants), as well as participants 
of the Research Incubator organized by the SEC’s Office of Asset Management. The authors are solely 
responsible for any errors or omissions. Orlov is an employee of the Commodity Futures Trading Commission. 
The views expressed in this article are made in Orlov's personal capacity and are based upon the author's 
personal analysis and independent understanding of the subject matter, and do not necessarily represent the 
views of the CFTC, its Commissioners, or the United States Government. Nor does the article or the personal 
views expressed herein constitute or imply any CFTC or United States Government endorsement of, or 
preferential treatment toward, any non-federal entity. 



2 

1 Introduction 

A number of leading scholars have recently voiced the view that hedge funds would not—and 

could not—represent a separate, financially relevant asset class on their own.1 Former hedge 

fund manager Simon Lack (2012) has pointedly written that "[i]f all the money that’s ever been 

invested in hedge funds had been put in Treasury bills instead, the results would have been twice 

as good" (p. 1). The academic literature reflects this chasm. Ackermann, McEnally and 

Ravenscraft (1999), Brown, Goetzmann and Ibbotson (1999), and Liang (1999) showed that in 

the aggregate, hedge funds (henceforth, HFs) realize positive risk-adjusted performance, which 

is a condition to generate economic value in a mean-variance framework; however, Griffin and 

Xu (2009) find little evidence that HFs, on average, deliver abnormal performance. At the 

individual fund level, Chen and Liang (2007) show that HFs time the equity market and Kosowski, 

Naik and Teo (2007) show that abnormally high performance of top HFs cannot be explained by 

pure luck. Yet, Fung, Hsieh, Naik and Ramadorai (2008) find that only a quarter of all funds of 

HFs produce significantly positive alphas and Dichev and Yu (2011) report that the HF returns 

are not much higher than the risk-free rate once investor capital flows into and out of funds are 

taken into account. 

In spite of the raging debate, investors kept pouring wealth into the HF industry with renewed 

vigor after the 2007-2009 Global Financial Crisis, and the assets under management by the 

overall industry have increased by $524.8 billion in 2020 only and at the end of 2020 the total 

assets of hedge funds have exceeded $4.1 trillion (BarclayHedge Research, 2021).2 Are investors 

just after a mirage? Are they just lured by the record performances allegedly achieved by a few 

lonely but famed HFs during the 1980s and 1990s, when the industry was nascent and many of 

the very HF “stars” were still small and riding green pastures, free of strategy over-crowding? To 

try and tackle these questions, our paper presents comprehensive, out-of-sample evidence on 

the potential benefits accrued to investors who diversify their portfolios of bonds, stocks, and 

                                                        
1 For instance, John Cochrane has been quoted by Lim (2013) to have stated: “Hedge funds are not a new 
asset class. They trade in exactly the same securities you already own.” 
2 For comparison, hedge funds assets were less than $40 billion in 1990 (see Agarwal, Mullally and Naik, 
2015). 
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publicly traded real estate to include HF strategies.  

HFs are alternative investment vehicles that are subject to limited regulation and thus can take 

advantage of sophisticated strategies that rely on leverage, short-selling, and derivatives (see, 

e.g., Agarwal, Mullally and Naik, 2015, and Getmansky, Lee and Lo, 2015, for an introduction and 

references to seminal papers). Major investors in HFs include foundations, public and private 

pension funds, university endowments, and funds of HFs, but the ability of relatively small 

investors to expand their asset menus to include HF strategies has recently been facilitated by 

the advent of investable HF indices. Therefore whether or not HFs do create economic value (at 

least) in stylized portfolio choice problems and under fairly realistic assumptions has become a 

pressing research question, of general interest. 

Although HFs tout their sophisticated strategies and promise to deliver superior returns that are 

largely immune to adverse market developments, it remains important to provide systematic, 

optimization-based evidence on whether investors can actually reap risk-adjusted benefits from 

diversifying into this asset class. In fact, a literature exists that has investigated the null 

hypothesis that HFs could not add significant (often risk-adjusted) economic value. In many 

respects, the seminal paper is Ackermann et al. (1999) which assessed the portfolio value of HFs 

using Elton, Gruber and Rentzler's (1987) mean-variance methodology for estimating the 

contribution of an alternative investment to an existing portfolio. They reported that the 

correlations between HF returns and eight international stock and bond indices were sufficiently 

low, and the Sharpe ratio of HF was sufficiently high to augment the overall Sharpe ratio. 

Similarly, Agarwal and Naik (2000) found that a portfolio comprising of passive asset classes and 

investing in mainly nondirectional HF strategies provided better a ex-ante risk-expected-return 

tradeoff than just investing passively in a broad range of asset classes comprising of equities, 

bonds, currencies, and commodities. These conclusions were discussed by a number of other 

papers set up in a Markowitz’s static mean-variance framework, wherein HFs are usually 

assigned considerable weight at the expense of bonds, see e.g., Amenc, El Bied and Martellini 

(2003), Terhaar, Staub and Singer (2003), and recently Mladina (2015). However, there are 

severe doubts as to whether a standard mean-variance framework and the Sharpe ratio as a 
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leading performance index to rank funds may be suitable to HF strategies. Although adding HFs 

to an asset menu leads to mean–variance improvements, Amin and Kat (2003a) have shown that 

including them in a given (not optimized) portfolio may frequently lead to lower skewness and 

higher kurtosis, which are then impossible to gauge in a two-moment set up. Cremers, Kritzman 

and Page (2005) have rejected the validity of mean-variance analysis applied to HFs due to the 

strong and statistically significant non-normalities of HFs and experimented instead with the 

maximization of the log utility of wealth (which turns out to support the selection of the 

maximum growth portfolio).3 Recognizing the significant tail risk that HFs expose to, Agarwal 

and Naik (2004) have proposed to assess the economic value of HFs in a mean-conditional Value 

at-Risk (M-CVaR) framework. Recently, Karehnke and de Roon (2020) have provided formal 

nonparametric tests to analyze the cost of skewness for investors and finnd that about 11% of 

the hedge funds provide both mean-variance and skewness benefits for stock and bond investors. 

In this paper, we also take steps from a need to go past the risk-return characterization of HFs, 

and we contribute to the literature relative to each of these studies along two or more of the 

following dimensions: (i) we perform a dynamic, long-horizon portfolio optimization that admits 

cash outflows (in the stylized form of consumption streams) under constant relative risk 

aversion preferences that do not only integrate mean and variance in expected utility 

optimization, but focus instead on the entire predictive density of future outcomes, (ii) following 

Barberis (2000) we take parameter uncertainty into account in the sense that we compute 

optimal consumption and portfolio shares under the Bayesian predictive density of excess asset 

returns; (iii) we account for transaction costs on an ex-ante basis (in fact, these are pegged to 

make HFs more expensive to trade), i.e., allowing the investors not to trade when the costs 

incurred would exceed the expected utility gain from trading; (iv) we measure the welfare 

benefits of HFs as an asset class relying on realized utility differential measures of risk-adjusted 

performance, and (v) we conduct an out-of-sample (OOS) analysis. 

                                                        
3 Since the seminal work by Agarwal and Naik (2004), it is well understood that HFs may exhibit non-
normal payoffs for reasons such as their use of options, or of option-like dynamic strategies. The payoffs 
on a large number of equity-oriented hedge strategies resemble those of writing put options. 
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Importantly, because we embrace a dynamic portfolio approach which estimates hedging 

demands and features long-horizon investors, in this paper we also take into account the 

existence (if any) of linear predictability in the returns of the assets in the menu of choice. In this, 

we follow Bali, Brown and Caglayan (2012, 2014) and Wegener, von Nitzsch and Cengiz (2010) 

who have stressed that while HFs are not market-neutral as they are exposed to systematic, 

macroeconomic-type risks, such as the default premium and nominal interest rate shocks that 

predict performance. In fact, as emphasized by Amenc, El Bied and Martellini (2003), Avramov, 

Barras and Kosowski (2013), and Avramov, Kosowski, Naik and Teo (2011), HF returns are 

exposed to a large number of rewarded risk factors and, as such, we should expect them to be 

predictable because, as argued by Ferson and Harvey (1991), most of the predictability in 

financial returns can be attributed to predictable shifts in risks and the market-wide reward for 

risks.4 For instance, HFs rely heavily on leverage, which might be highly sensitive to business 

cycle conditions. To this purpose, we use simple but popular vector autoregressive (VAR) models, 

as in Campbell et al. (2003). The investor maximizes expected power utility defined over a 

monthly consumption stream over a given investment horizon, H. It is important to produce 

utility-based evidence as even a superior risk-return trade-off of a HF strategy in a static 

perspective may not improve an investor’s risk-adjusted expected performance in the light of the 

remaining assets in the menu of choice (Amin and Kat, 2003a).5 With this goal in mind, we 

conduct a wide range of recursive OOS experiments and assess the realized performance of 

portfolios using two metrics, the certainty equivalent return (CER) and the Sharpe ratio. The CER, 

defined as the riskless return that an investor is willing to accept in order to forego a risky 

portfolio/strategy/asset menu, is the most appropriate measure for ranking alternative models 

because it is a function not only of the underlying return generating process but also of the 

                                                        
4 Amenc et al. (2003) find evidence of predictability in HF index returns using the (lagged) yield on 3-
month T-bills, the dividend yield, the default spread, the term spread, the US and world equity factors, and 
changes in a volume-weighted basket of currencies vs. the US dollar. Avramov et al. (2013) examine 
whether conditional strategies based on simple trading rules can successfully exploit predictability from 
the default spread, the dividend yield, the VIX index, and the net aggregate flows into the HF industry. 
5 Similarly, Bollen (2013) has suggested that while market-neutral (i.e., zero-R2) hedge funds are 
characterized by high Sharpe ratios, they likely expose the investors to substantial downside risk. 
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investor’s preferences. We also report the Sharpe ratio for completeness but note that it may lead 

to inaccurate rankings due to (spurious) serial correlation in HF returns, which can be attributed 

to return smoothing and the presence of illiquid securities in HF portfolios (see Getmansky, Lo 

and Makarov, 2004; Khandani and Lo, 2011). 

Our analysis is performed in two steps. In the first step, we compute the optimal portfolio-

consumption rules for an investor who diversifies across stocks, government bonds, corporate 

bonds, and REITs; we refer to this setup as the baseline asset menu. For each of three values of 

the relative risk-aversion coefficient (2, 5, and 10), we entertain a total of 64 VAR models, which 

correspond to all possible combinations that can be built assuming either one or two 

autoregressive lags, two different sample selection methods (i.e., rolling vs. expanding windows), 

and using up to four predictors (i.e., the default and term structure spreads, the 3-month short 

rate, and the dividend yield) which are widely used in the literature on return predictability. 

Macroeconomic variables and uncertainty proxies such as these were recently shown to have 

explanatory power for HF returns (see Avramov et al., 2011; Bali et al., 2014), which is why we 

use these same predictors (in addition to HF strategy-specific predictors, following Fung and 

Hsieh, 2004) in our VAR models in the second step of the analysis. Moreover, we account for 

transaction costs and also compute Bayesian optimal decisions to also compare them with 

simpler portfolio rules that ignore parameter uncertainty. 

The model yielding the highest CER within the baseline asset menu is expanded in a second step 

to one (out of ten) HF strategy at the time using Hedge Fund Research style indices; we refer to 

this environment as the extended asset menu. In each case, we also re-optimize the structure of 

the models to include HF strategy-specific predictors. Using the resulting realized OOS CER 

estimates, we evaluate whether extending the asset menu to include HF strategies is desirable to 

long-term, risk-averse investors who are already well diversified across a broad spectrum of 

classical asset classes. This approach also allows us to identify which hedge strategy, if any, 

provides the highest realized utility gains relative to the optimal baseline portfolio. 

The key results of our analysis can be summarized as follows. In both the baseline and extended 

asset menus, the optimal portfolio weights are somewhat skewed (especially when parameter 
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uncertainty is ignored) towards real estate but appear to be rather stable over time and to seldom 

require leverage and short-selling even though we admit short strategies. We present evidence 

that the inclusion of HF strategies leads to a moderate but plausible demand for HFs especially 

in the Bayesian case, which may lead an aggressive investor to leverage her portfolio by shorting 

1-month T-bills and US Treasuries. Moreover, the implied hedging demands for HF strategies tend 

to be positive because their returns show a mild first-order serial correlation while they have 

negative coefficients on past lags of the predictors. As a result, long positions in HFs can be used 

to hedge intertemporal stochastic variations in investment opportunities and even anticipated 

changes in parameter estimates. If investor were able to detect top performing models for the 

prediction of risk premia on the different asset classes, most HF strategies and, as a result, also 

the composite HFR index would outperform a classical asset menu on a risk-adjusted basis, even 

taking the resulting sample uncertainty and transaction costs into account.  

Most of the OOS economic value reported in this paper fails to result from a mean-variance order 

improvement: in fact, when combined with classical assets, most (all) HF strategies yield realized 

mean returns (Sharpe ratios) that are approximately equal to the baseline allocation. For 

instance, for an investor with a constant relative risk aversion coefficient of 5, while traditional 

assets lead to a mean return of 12.1% per year and to an annualized Sharpe ratio of 

approximately 0.41, when the HFR composite index is used to expand the asset menu, the 

realized annual mean return climbs to 12.7% and the Sharpe ratio ticks up to 0.44. Crucially, HF 

strategies substantially improve the higher-moment properties of the optimal portfolio: kurtosis 

declines from 6.7 to 3.80 and skewness stays essentially constant at -0.6.  

This logic geared at empirically assessing the existence of a three-way trade-off, if any, between 

Sharpe ratios, certainty equivalent returns, and skewness and kurtosis can be best visualized 

with the help of the three pictures in Figure 1. The plots represent the annualized Sharpe ratio 

(on the horizontal axis), the annualized percentage CER (vertical axis), and the Jarque-Bera 

(henceforth, JB) statistic of non-normalities (a composite of realized skewness and kurtosis, the 

size of the circles) as perceived by a generically risk-averse investor (not necessarily mean-

variance, for instance under power utility preferences) derived from three alternative 
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frameworks.6 In the leftmost panel, we have the case of a Gaussian IID model with constant 

investment opportunities, in which skewness and kurtosis are be fixed at their Gaussian levels 

(zero and three, respectively), so that the ray/diameter of the circles is fixed and by necessity the 

CER must be monotone increasing in the Sharpe ratio.7 This means that in the absence of 

predictability, there cannot be any trade-offs between achieving high Sharpe ratios at the cost of 

non-normal portfolio returns and pursuing CER maximization. One can read our paper, as an 

attempt to refute this scenario when HF strategy excess returns belong to the asset menu and a 

rather pervasive search over potential optimizing models of constant vs. time-varying 

investment opportunities is performed. The middle picture in Figure 1 concerns an almost 

opposite case in which as the Sharpe ratio increases, the skewness and kurtosis properties of the 

optimal portfolio worsen (i.e., skewness declines and kurtosis incrases), the JB statistic worsens 

so that the CER declines (this can happen intentionally through portfolio manipulation or not, 

see, e.g., Goetzmann et al., 2007). Therefore, the circles are located along a monotone decreasing 

functions and their ray/diameter grows as we move towards the right, in correspondence to 

increasing Sharpe ratios. This case is a distinctive possibility in our empirical tests, i.e., that—as 

often reported in the literature—HF may represent Sharpe ratio-enhancing alternative assets 

however ridden of asymmetric and non-linear patterns that can make for low realized OOS CERs. 

Finally, the third, rightmost plot represents the plausible case in which the empirical properties 

of the data may prevent us from establishing any specific links between the realized Sharpe ratio, 

skewness, and kurtosis of the optimal portfolio weights. This means that different set ups (in our 

application, asset menus) may lead to heterogeneous trade-offs among mean, variances, 

                                                        
6 The JB statistic Is defined as 𝐽𝐽𝐽𝐽 ≡ (𝑇𝑇/6)(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆� 2+0.25(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾� − 3)2) where T is the number of 
observations, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�  is the sample skewness, and 𝑆𝑆𝐾𝐾𝐾𝐾𝐾𝐾�  is the sample kurtosis. As shown by Schuhmacher, 
Kohrs, and Auer (2021), the existence of skewness in returns does not allow a rejection of mean-variance 
analysis because (in the presence of a risk-free asset), the return distribution of every portfolio is 
determined by its mean and variance if and only if asset returns follow a generalized location-scale skew-
elliptical distribution which is clearly not normal. In this case, our notion of non-normality will need to be 
re-interpreted as deviation from such special elliptical benchmark and JB statistic corrected to account for 
some degree of “allowed” skewess. 
7 To our argument, the shape of such a relantionship is irrelevant and in no way the link should be linear 
and described by a 45-degree line. In fact, note that the scales on the axes are quite different. The plot 
implies that under Gaussian IID investment opportunities, the investor turns into a Sharpe ratio optimizer. 
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skewness, kurtosis, and certainty equivalent returns. 

Under the more realistic assumption that an investor could not know in advance what the best 

performing model (in terms of realized CER) would have to be ex-post, so that she had to pick at 

random a median model, the investor would have not fared always so well unless she had 

known—unrealistically—which specific hedge strategy to pick. Indeed, betting on the composite 

HFR index or on a fund-of-funds strategy leads to median realized CERs that are negative and 

therefore dominated by the simplest of the portfolio strategies: 100% in cash at all times. While 

the realized CERs of the median predictability model are promising for a few strategies because 

they exceed the performance of the median model applied to a traditional asset menu, other 

strategies lead to a non-positive CER. Depriving investors from the possibility to fine tune the 

predictability model hurts in particular the strategies that trade equities. 

Our paper draws primarily on two strands of the literature. The first strand attempts to explain 

HF returns using style analysis, multifactor, and nonlinear models (see, e.g., Fung and Hsieh, 

2002a, 2004; Hamza, Kooli and Roberge, 2006; Bali et al., 2012, 2014). A second strand of 

literature focuses on the performance evaluation and optimal portfolio decisions involving hedge 

strategies (see, e.g., Agarwal and Naik, 2004, Mladina, 2015, Panopoulou and Vrontos, 2015). 

Finally, there is extensive research on the underlying biases in the data on HF returns and the 

perils these would pose to a meaningful assessment of the risk-adjusted benefits (see, e.g. 

Agarwal, Fos and Jiang, 2013, Aiken, Clifford and Ellis, 2013). Our specific contribution is that we 

pursue a dynamic, optimizing consumption-portfolio approach that recognizes the existence of 

predictability in HF returns as well as in all other asset classes typically available to an investor. 

In doing so, we echo the recommendation by Amin and Kat (2003a) to distinguish between an 

analysis of "(…) whether in terms of risk and return hedge funds offer investors value for money.” 

and an integrated portfolio view as “It is important to note from the outset, however, that strictly 

speaking this is a different question than whether hedge funds should be included in an 

investment portfolio. The fact that an investment offers a superior risk-return profile does not 

automatically mean investors should buy into it as it may not fit their preferences and/or fit in 
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with other available alternatives.” (p. 253).8 

Bali, Brown, and Demirtas (2013) have analyzed whether HFs provide a signficant economic 

improvement over standard portfolios of stocks and bonds, also as a result of HFs’ extensive use 

of derivatives, short selling, and leverage to yield dynamic trading strategies that create 

significant nonnormalities in realized portfolio returns. Because traditional performance 

measures fail to provide an accurate characterization of the relative strength of portfolios 

including HFs, they also employ utility-based nonparametric and parametric performance 

measures, such as (almost) stochastic dominance and manipulation-proof indices. Differently 

from Brown et al.’s work, we adopt a more tightly parameterized expected power, CRRA set up 

that however allows us to perform systematic OOS recursive experiments that take into explicit 

account predictability, transaction costs (ex-ante, hence creating a no-trade region), and 

parameter uncertainty, through the recursive calculation of Bayesian portfolio rules.9,10 

The next section describes the research design that allows us to exploit the predictability in asset 

returns, determine optimal consumption-portfolio rules, and measure OOS performance. Section 

3 describes the data on the baseline assets, HF indices, and predictor variables. Section 4 

systematically selects the best-performing model from within the baseline asset menu. Section 5 

computes optimal allocations with HF strategies and studies which strategies, if any, can improve 

the realized utility of the investor. Section 6 concludes. 

                                                        
8 Amin and Kat (2003a) find that the majority of individual HFs as well as HF indices cannot in isolation 
produce efficient payoffs, but that they are able to do so when combined in a portfolio with the S&P 500 
index, which suggests that a relatively well-developed portfolio approach to the problem is advisable. 
9 Hoevenaars, Molenaar, Schotman and Steenkamp (2008) have also reported that HFs have a substantial 
impact on the portfolio rules. However, we perform an OOS recursive back-test and employ a utility-based 
metric (CER) to compare the benefits of diversifying into the HF strategies. 
10 There is also one small literature that has investigated the effects of the (sizeable, between 3 and 4% on 
average, see Ibbotson, Chen, and Zhu, 2011; Jurek and Stafford, 2015) fees charged by HFs on typical 
inferences on their value to portfolio diversification. In fact, in our design, we have used HF returns net-
of-fees and transaction costs along with returns on other, more classical asset classes that are treated in 
more heterogeneous ways: for instance, stock and bond returns are gross-of-fees, while REIT returns are 
net of management fees and costs internalized by the trusts. Yet, in large portions of our analysis we 
further impose transaction costs to trade HFs, which represents a double counting of fees and trading 
costs that is aimed at taking their illiquidity into account. 
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2 Research design 

We compute the optimal portfolio-consumption rules using the dynamic programming discrete-

time solution methods applied (among many other papers) in Barberis (2000). At least in the 

frequentist portion of our empirical work, we perform recursive, realized OOS evaluations while 

adjusting for small-sample bias following Engsted and Pedersen (2012). The investor is assumed 

to have a five-year investment horizon. The return generating process has either a VAR or 

Gaussian IID structure, and model estimation and optimization take place within rolling and 

expanding window schemes. Moreover, we entertain both the case in which our “representative” 

investor behaves like a frequentist who computes the predictive density of future asset returns 

by simply plugging estimated parameter values in the assumed data generating process as well 

as the Bayesian set up in which the investor incorporates estimation uncertainty by taking 

integrating the posterior density of the unknown parameters out to be obtain a predictive density 

for asset returns that takes parameter uncertainty into account. This section gives a  summary of 

these methodologies. 

2.1 Predictability of asset returns 

2.1.1 Vector autoregressive models and bias correction in the frequentist case 

The dynamics of investment opportunities are described by a range of reduced-form, pth-order 

VAR(p) processes. All variables, including the predictors, are modeled as endogenous. A vector 

of state variables 𝒛𝒛𝑡𝑡+1 is defined as 

 𝒛𝒛𝑡𝑡+1 ≡ �
𝐾𝐾1,𝑡𝑡+1
𝒙𝒙𝑡𝑡+1
𝒚𝒚𝑡𝑡+1

�, (1)   

where 𝐾𝐾1,𝑡𝑡+1 is the log return on a benchmark short-term security, 𝒙𝒙𝑡𝑡+1 is an (n - 1) vector of log 

excess returns on the risky asset, and 𝒚𝒚𝑡𝑡+1 is an m vector of predictor variables. The stochastic 

evolution of 𝒛𝒛𝑡𝑡+1 in a VAR(1) model is given by11 

 𝒛𝒛𝑡𝑡+1 = 𝜱𝜱0 + 𝜱𝜱1𝒛𝒛𝑡𝑡 + 𝒗𝒗𝑡𝑡+1, (2)   

                                                        
11 All higher-order VAR can be re-written as a VAR(1) by way of a companion form representation (see e.g., 
Hamilton, 1994, p. 259). When applied to the companion form, formulas (2) – (4) yield the corresponding, 
relevant quantities (e.g., moments) for a generic VAR(p). 
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where 𝜱𝜱0 is the (n+m) vector of intercepts, 𝜱𝜱1 is the (n+m)x(n+m) coefficients matrix, and 𝒗𝒗𝑡𝑡+1 

is a vector of Gaussian white noise processes distributed as 

 𝒗𝒗𝑡𝑡+1 =  𝒩𝒩(𝟎𝟎,∑𝒗𝒗∼   𝑖𝑖.𝑖𝑖.𝑑𝑑. ),                ∑𝒗𝒗 ≡ 𝑉𝑉𝑉𝑉𝐾𝐾𝑡𝑡(𝒗𝒗𝒕𝒕+𝟏𝟏) = �
𝜎𝜎12 𝝈𝝈𝟏𝟏𝒙𝒙′ 𝝈𝝈𝟏𝟏𝒚𝒚′

𝝈𝝈𝟏𝟏𝒙𝒙 𝜮𝜮𝒙𝒙𝒙𝒙 𝜮𝜮𝒙𝒙𝒚𝒚′

𝝈𝝈𝟏𝟏𝒚𝒚 𝜮𝜮𝒙𝒙𝒚𝒚 𝜮𝜮𝒚𝒚𝒚𝒚
�  (3)  

The shocks are zero mean, homoskedastic normal variables, which are contemporaneously 

correlated but IID over time. Normality is therefore induced in the unconditional distribution of 

𝒛𝒛𝑡𝑡, where the mean 𝝁𝝁𝒛𝒛 and the covariance matrix 𝜮𝜮𝒛𝒛𝒛𝒛 are described by 

 𝝁𝝁𝒛𝒛 = (𝑰𝑰(𝑛𝑛+𝑚𝑚) −𝜱𝜱1)−1𝜱𝜱0,          𝑣𝑣𝑆𝑆𝑣𝑣(∑𝒛𝒛) = (𝑰𝑰(𝑛𝑛+𝑚𝑚)2 − 𝜱𝜱1 ⊗𝜱𝜱1)−1𝑣𝑣𝑆𝑆𝑣𝑣(𝜮𝜮𝑣𝑣). (4)   

In the frequentist case, and differently from much earlier researcher, we take into account the 

instability of the VAR parameters and adjust the estimates for small-sample bias as in Engsted 

and Pedersen (2012). Using Pope’s (1990) formula, Engsted and Pedersen quantify the bias in 

the standard, OLS estimate 𝜱𝜱�1 of the slope parameters of the VAR in (2) as 

 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑇𝑇 = −
𝒃𝒃
𝑇𝑇 + 𝑂𝑂 �𝑇𝑇−

3
2�, (5)   

where T is the number of observations used in estimation and 

𝒃𝒃 = 𝜮𝜮𝑣𝑣 ��𝑰𝑰(𝑛𝑛+𝑚𝑚) −𝜱𝜱1
′ �−1 + 𝜱𝜱1

′ �𝑰𝑰(𝑛𝑛+𝑚𝑚) − (𝜱𝜱1
′ )2�−1 + � 𝜆𝜆𝑖𝑖

𝑛𝑛+𝑚𝑚

𝑖𝑖=1

�𝑰𝑰(𝑛𝑛+𝑚𝑚) − 𝜆𝜆𝑖𝑖𝜱𝜱1
′ �−1� 𝜮𝜮𝑧𝑧−1, (6)   

𝜮𝜮𝒗𝒗 and 𝜮𝜮𝒛𝒛 are defined in (3) and (4), respectively, and 𝜆𝜆𝑖𝑖 is the ith eigenvalue of 𝜱𝜱1.12 

Starting from the OLS 𝜱𝜱�1, the bias-correction procedure is implemented in four steps. First, as 

long as there are no unit roots in 𝜱𝜱�1, we compute the bias 𝑩𝑩𝑇𝑇 by substituting 𝜱𝜱�1 for 𝜱𝜱1 in (6). 

Second, we subtract the result from the OLS estimate to arrive at the bias-corrected 𝜱𝜱�1. Third, 

we check whether the latter contains unit roots and, if so, find the maximum value κ ∈ [0, 0.01, 

0.02, …, 0.99] that multiplies 𝑩𝑩𝑇𝑇 such that the bias-corrected 𝜱𝜱�1 lies again in the stationarity 

region (see Kilian, 1998); otherwise, we set κ = 1. Finally, we calculate the bias-adjusted estimate 

of the intercept 𝜱𝜱0 by imposing that the unconditional mean vector of 𝒛𝒛𝑡𝑡 coincides with its full-

                                                        
12 The rate of convergence of the approximation error in (5) is equal to 𝑇𝑇−3/2 and is comparable to that of 
either a bootstrap or Monte Carlo bias-adjustment simulation. 
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sample mean:13 

 𝜱𝜱�0 = �𝑰𝑰(𝑛𝑛+𝑚𝑚) −𝜱𝜱�1� ∙ 𝝁𝝁�𝒛𝒛. (7)   

To establish a benchmark against which to assess the VAR-based results, we also computed 

optimal portfolios on the basis of a Gaussian IID model for excess returns in which returns evolve 

according to 

 𝒙𝒙𝑡𝑡+1 = 𝜱𝜱0 + 𝒗𝒗𝑡𝑡+1,               𝒗𝒗𝑡𝑡+1 =  𝒩𝒩(𝟎𝟎,∑𝒗𝒗∼   
𝑖𝑖.𝑖𝑖.𝑑𝑑. ). (5)    

This model implies no predictability and, equivalently, constant investment opportunities. Under 

this dynamics for excess returns, the investor will choose the same portfolio allocation regardless 

of the investment horizon. Bias correction has no effect in this framework as both the bias-

corrected and the unadjusted estimates of 𝜱𝜱0 coincide. 

2.1.2 Bayesian posterior estimation 

In a Bayesian set up, the investor shall treat the data as fixed and given and the parameters (say, 

𝜱𝜱0, 𝜱𝜱1, and ∑𝒗𝒗) as random. Her goal then becomes to estimate the posterior, joint density of the 

parameters of interest, 𝑝𝑝(𝜱𝜱0,𝜱𝜱1,∑𝒗𝒗|𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇) (the first observation is used to condition the 

analysis because of the Markov nature of the model). To this purpose, it is convenient to re-write 

the model as  

 𝒁𝒁 = 𝒀𝒀𝒀𝒀 + 𝑽𝑽, (6)   

where 𝒁𝒁 is a (T-1)x(n+m) matrix with 𝒛𝒛2′ , 𝒛𝒛3′ , …, 𝒛𝒛𝑇𝑇′  as rows, 𝒀𝒀 is a (T-1)x(n+m+1) matrix with 

[1 𝒛𝒛2′ ], [1 𝒛𝒛3′ ], …, [1 𝒛𝒛𝑇𝑇′ ] as rows, 𝒀𝒀 is a (n+m+1)x(n+m) matrix of coefficients with 𝜱𝜱0
′  in its top 

row and 𝜱𝜱1
′  below it, and 𝑽𝑽 is a (T-1)x(n+m) matrix with 𝒗𝒗2′ , 𝒗𝒗3′ , …, 𝒗𝒗𝑇𝑇′  as rows. Using a classical, 

uninformative priors approach, we assume inverse Gamma-Wishart priors 

 𝑝𝑝(𝒀𝒀,𝚺𝚺𝒗𝒗) ∝ |𝚺𝚺𝒗𝒗|−(𝑛𝑛+𝑚𝑚+1)/2, (7)   

so that simple calculations show that the posterior 𝑝𝑝(𝒀𝒀,𝚺𝚺𝒗𝒗−1|𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇) is proportional (up to 

a constant of integration) to 𝑝𝑝(𝑣𝑣𝑆𝑆𝑣𝑣(𝒀𝒀)|𝚺𝚺𝒗𝒗𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇) 𝑝𝑝(𝚺𝚺𝒗𝒗−1|𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇) where 

 𝚺𝚺𝒗𝒗−1|𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇~𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑉𝑉𝐾𝐾𝐾𝐾(𝑇𝑇 − 𝑛𝑛 −𝑚𝑚 − 1, (𝑽𝑽�′𝑽𝑽�)−1) (8)   

                                                        
13 Through a simulation study, Engsted and Pedersen (2012) find that the bias-correction procedure 
outlined above leads to an improvement upon the initial OLS estimates in terms of mean square error, 
variance and bias, and that the improvement is more significant as the samples are smaller. 
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 𝑣𝑣𝑆𝑆𝑣𝑣(𝒀𝒀)|𝚺𝚺𝒗𝒗, 𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇~𝑁𝑁(𝑣𝑣𝑆𝑆𝑣𝑣�𝒀𝒀��,𝚺𝚺𝒗𝒗⨂(𝒀𝒀′𝒀𝒀)−1), (9)   

and 𝑽𝑽� ≡ 𝒁𝒁 − 𝒀𝒀𝒀𝒀� is the matrix of residuals. 

2.2 Portfolio selection 

2.2.1 Preferences and optimal portfolio-consumption choice 

As in Barberis (2000), the investor can allocate her savings among n securities, with the resulting 

gross portfolio returns given by 

 𝑅𝑅𝑝𝑝,𝑡𝑡+1 = 𝑆𝑆𝑒𝑒𝑝𝑝 ��𝛼𝛼𝑖𝑖,𝑡𝑡�𝑅𝑅𝑖𝑖,𝑡𝑡+1 − 𝑅𝑅1,𝑡𝑡+1�
𝑛𝑛

𝑖𝑖=2

+  𝐾𝐾1,𝑡𝑡+1�, (10)   

where 𝑅𝑅i,t+1 is the gross return on the risky asset i which has been assigned a weight 𝛼𝛼𝑖𝑖,𝑡𝑡, and 

𝑅𝑅1,𝑡𝑡+1 is the gross return on a benchmark, short-term security.14 In line with the portfolio choice 

literature (see Brandt, 2009), we assume that the investor maximizes time-separable, CRRA 

power utility preferences, here written in recursive form, 

 𝑈𝑈�𝐶𝐶𝑡𝑡,𝐸𝐸𝑡𝑡(𝑈𝑈𝑡𝑡+1 )� =  �(1 − 𝛿𝛿)𝐶𝐶𝑡𝑡
1−𝛾𝛾 + 𝛿𝛿 �𝐸𝐸𝑡𝑡�𝑈𝑈𝑡𝑡+1

1−𝛾𝛾���
1

1−𝛾𝛾 , (11)   

where 𝛿𝛿 is the subjective discount factor and 𝛾𝛾 > 0 is the coefficient of constant relative risk 

aversion.  𝛾𝛾 also determines the investor’s consumption substitution patterns across time as (11) 

implies that the constant elasticity of intertemporal substitution is simply 𝜓𝜓 = 𝛾𝛾−1.15 It is well-

known (see Ang, 2014) that power utility makes an investor’s expected utility dependent on 

features of the entire distribution of the realized consumption/wealth process, including 

moments of order higher than mean and variance. This resonates well with the great emphasis 

that has been placed on the (allegedly, poor) skewness, kurtosis, and left tail risk properties of 

HF strategy returns (see, e.g., Amin and Kat, 2003b; Agarwal, Ruenzi and Weigert, 2017). 

On each period t, the investor allocates her savings (𝑊𝑊𝑡𝑡−𝐶𝐶𝑡𝑡) across the assets in her menu, thus 

                                                        
14 We express all returns in nominal terms because of a relatively low and constant realized inflation in 
our sample ought to have been discounted in assets prices and it is unlikely to affect the key findings. 
15 It is well known that while γ mainly drives optimal portfolio allocation, ψ determines the optimal 
consumption-savings ratio. Because here we just focus on realized portfolio performances, preliminary 
experiments on the benchmark asset menu revealed that ψ indeed exercised a rather modest effect on 
optimal recursive weights so that setting 𝜓𝜓 = 𝛾𝛾−1 implies a relatively minor simplification. 
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facing the intertemporal capital accumulation (budget) constraint: 

 𝑊𝑊𝑡𝑡+1 = (𝑊𝑊𝑡𝑡−𝐶𝐶𝑡𝑡)𝑅𝑅𝑝𝑝,𝑡𝑡+1 = 𝑊𝑊𝑡𝑡(1−𝑣𝑣𝑡𝑡)𝑅𝑅𝑝𝑝,𝑡𝑡+1,  (12) 

where 𝑣𝑣𝑡𝑡 ≡ 𝐶𝐶𝑡𝑡/𝑊𝑊𝑡𝑡 is the optimal consumption-wealth ratio. Moreover, we assume that the 

investor rebalances her portfolio at regular intervals defined by K - 1 points (𝜏𝜏1, 𝜏𝜏2, …, 𝜏𝜏𝐾𝐾−1) solves 

a dynamics programming problem. Of course, when K = 1, there is no rebalancing and the 

portfolio problem simplifies to a buy-and-hold one. As in Barberis (2000), we employ standard 

state-space discretization techniques and then solve the problem iteratively backwards (see also 

the Appendix to Guidolin and Timmermann, 2008, also with reference to the details of the 

discretization grid) starting from 𝜏𝜏𝐾𝐾−1 = t + [(K - 1/K)]H, where H is the investment horizon, going 

back to 𝜏𝜏0 = t. The control variables of the problem are the portfolio weigths (𝛼𝛼0, 𝛼𝛼1, …, 𝛼𝛼𝐾𝐾−1) and 

the consumption share share selections, 𝑣𝑣0, 𝑣𝑣1, …, 𝑣𝑣𝐾𝐾−1. Needless to say, when K = 1, the dynamic 

program turns into a buy-and-hold portfolio problem. Therefore the initial, time t portfolio 

problem is: 

 max
𝛼𝛼0,𝛼𝛼1,…,𝛼𝛼𝐾𝐾−1
𝑐𝑐0,𝑐𝑐1,…,𝑐𝑐𝐾𝐾−1

𝐸𝐸𝑡𝑡  ��(1 − 𝛿𝛿)𝜏𝜏𝑗𝑗−𝑡𝑡
𝐶𝐶𝜏𝜏𝑗𝑗
1−𝛾𝛾

1 − 𝛾𝛾

𝐾𝐾−1

𝑗𝑗=0

�, (13)  

subject to (15) and the dynamic wealth constraint that for 𝑆𝑆 ≥ 1 

 𝑊𝑊𝜏𝜏𝑘𝑘 = 𝑊𝑊𝜏𝜏𝑘𝑘−1𝑆𝑆𝑒𝑒𝑝𝑝 ��𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘−1�𝑅𝑅𝑖𝑖,𝜏𝜏𝑘𝑘 − 𝑅𝑅1,𝜏𝜏𝑘𝑘�
𝑛𝑛

𝑖𝑖=2

+ 𝑅𝑅1,𝜏𝜏𝑘𝑘�,  (14)   

in which wealth acts as the endogenous state variable.16 However, after defining the derived 

utility of wealth function as 

 𝑉𝑉(𝑊𝑊𝜏𝜏𝑘𝑘 , 𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘) ≡ max
𝛼𝛼𝑘𝑘,𝛼𝛼𝑘𝑘+1,…,𝛼𝛼𝐾𝐾−1
𝑐𝑐𝑘𝑘,𝑐𝑐𝑘𝑘+1,…,𝑐𝑐𝐾𝐾−1

𝐸𝐸𝜏𝜏𝑘𝑘  ��(1 − 𝛿𝛿)𝜏𝜏𝑗𝑗−𝑡𝑡
𝐶𝐶𝜏𝜏𝑗𝑗
1−𝛾𝛾

1 − 𝛾𝛾

𝐾𝐾−1

𝑗𝑗=𝑘𝑘

�, (15)   

we exploit the Bellman’s principle by which 𝑉𝑉�𝑊𝑊𝜏𝜏𝑘𝑘 , 𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘� = max 
𝛼𝛼𝑘𝑘,𝑐𝑐𝑘𝑘

𝐸𝐸𝜏𝜏𝑘𝑘 [𝑉𝑉�𝑊𝑊𝜏𝜏𝑘𝑘+1 , 𝒛𝒛𝜏𝜏𝑘𝑘+1 , 𝜏𝜏𝑘𝑘+1�] and 

the fact (to be proven by induction) that under CRRA preferences the value function factors in a 

                                                        
16 In a Gaussian IID framework, this first-order conditions of the programme (15)-(16) imply constant 
consumption shares and that the optimal portfolio rule is fully myopic with constant portfolio weights 
over time. 
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particularly convenient way, as 

 𝑉𝑉�𝑊𝑊𝜏𝜏𝑘𝑘 , 𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘� =

⎩
⎪
⎨

⎪
⎧𝑊𝑊𝜏𝜏𝑘𝑘

1−𝛾𝛾

1 − 𝛾𝛾 𝑄𝑄�𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘�  𝑊𝑊𝑖𝑖 𝛾𝛾 > 0, 𝛾𝛾 ≠ 1  

𝑙𝑙𝑛𝑛𝑊𝑊𝜏𝜏𝑘𝑘𝑄𝑄�𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘�                𝑊𝑊𝑖𝑖 𝛾𝛾 = 1

, (16)   

so that the Bellman’s equation is simply  

 
𝑄𝑄�𝒛𝒛𝜏𝜏𝑘𝑘 , 𝜏𝜏𝑘𝑘� ≡ max

𝛼𝛼𝑘𝑘,𝑐𝑐𝑘𝑘

𝐸𝐸𝜏𝜏𝑘𝑘  �𝑣𝑣𝑘𝑘+1𝑆𝑆𝑒𝑒𝑝𝑝 ��𝛼𝛼𝑖𝑖,𝑘𝑘�𝑅𝑅𝑖𝑖,𝜏𝜏𝑘𝑘+1 − 𝑅𝑅1,𝜏𝜏𝑘𝑘+1�
𝑛𝑛

𝑖𝑖=2

+  𝑅𝑅1,𝜏𝜏𝑘𝑘+1��
1−𝛾𝛾

+ 𝐸𝐸𝜏𝜏𝑘𝑘[𝑄𝑄�𝒛𝒛𝜏𝜏𝑘𝑘+1 , 𝜏𝜏𝑘𝑘+1�], 

(17)   

taken with respect to 𝒛𝒛𝜏𝜏𝑘𝑘+1~𝑁𝑁(𝜱𝜱�0 + 𝜱𝜱�1𝒛𝒛𝜏𝜏𝑘𝑘 ,𝚺𝚺�𝒗𝒗) in the frequentist case and with respect to the 

predictive density for the vector 𝒛𝒛𝜏𝜏𝑘𝑘+1  obtained from the posterior 𝑝𝑝(𝒀𝒀,𝚺𝚺𝒗𝒗−1|𝒛𝒛2, 𝒛𝒛2, … , 𝒛𝒛𝑇𝑇) by 

integrating it with respect to the conditional density 𝒛𝒛𝜏𝜏𝑘𝑘+1~𝑁𝑁(𝜱𝜱�0 + 𝜱𝜱�1𝒛𝒛𝜏𝜏𝑘𝑘 ,𝚺𝚺�𝒗𝒗), 

𝑝𝑝(𝒛𝒛𝜏𝜏𝑘𝑘+1|𝒛𝒛2, … , 𝒛𝒛𝜏𝜏𝑘𝑘−1 , 𝒛𝒛𝜏𝜏𝑘𝑘) = � 𝑝𝑝(𝒛𝒛𝜏𝜏𝑘𝑘+1|𝒀𝒀,𝚺𝚺𝒗𝒗−1; 𝒛𝒛2, … , 𝒛𝒛𝜏𝜏𝑘𝑘)
𝒀𝒀,𝚺𝚺𝒗𝒗−1

𝑝𝑝(𝒀𝒀,𝚺𝚺𝒗𝒗−1|𝒛𝒛2, … , 𝒛𝒛𝜏𝜏𝑘𝑘−1 , 𝒛𝒛𝜏𝜏𝑘𝑘)d(𝒀𝒀,𝚺𝚺𝒗𝒗−1) 
 (18) 

characterized in equations (8)-(9) in the Bayesian case, when parameter uncertainty is taken into 

account. Because in the latter case, the posterior may considerably depart from a Gaussian 

distribution and on the basis of the evidence of similar applications in the literature, the 

backward iterative solution is applied to the case of H = 5 years (i.e., 60 months), with 59 monthly 

rebalancing points. The expectation in (15) and (17) is approximated by simulation (drawing 

from the predictive density in (18)) using 40,000 independent trials, boosted using antithetic 

variate methods when K = 60 (monthly rebalancing), to keep computationalm feasibility, while 

we manage to use 100,000 independent trials when K = 1 (buy-and-hold strategy). 𝛿𝛿 is assumed 

to equal 0.223% in annualized terms (i.e., (1 − 𝛿𝛿) = 0.000186 at a monthly basis.17 

2.3 Imputing transaction costs 

Following Balduzzi and Lynch (1999) and Guidolin andn Hyde (2012), in our baseline exercise, 

we assume that the investor faces transaction costs that are proportional to wealth, so that her 

                                                        
17 Even though (1 − 𝛿𝛿) does not to equal the cash (potentially, risk-free) cash rate in this partial 
equilibrium framework, we stick to the convention of equaling subjective and market-implied, riskess 
discount rate, in this case identified with the 1-month T-bill rate. 
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law of motion for wealth is 

       𝑊𝑊𝜏𝜏𝑘𝑘+1 = 𝑊𝑊𝜏𝜏𝑘𝑘�1−𝑣𝑣𝜏𝜏𝑘𝑘��1−𝐾𝐾𝑣𝑣𝜏𝜏𝑘𝑘�𝑅𝑅𝑝𝑝,𝜏𝜏𝑘𝑘+1,  (19) 

where 𝐾𝐾𝑣𝑣𝜏𝜏𝑘𝑘  is transaction cost paid per dollar of wealth. The law of motion for wealth in (19) 

implicitly assumes that consumption at time 𝜏𝜏𝑘𝑘 and any transaction costs to be paid at the same 

time are obtained by liquidating costlessly the risky and the riskless assets in the proportions 

�𝜶𝜶𝜏𝜏𝑘𝑘�𝑘𝑘=0
𝐾𝐾−1. This assumption is sensible for liquid assets, especially when they pay coupons or 

dividends that can be readily used to pay for transaction costs. This certainly the case for the 

baseline asset menu of stocks, bonds, and REITs and—in spite of their reduced liquidity—also 

when the asset menu will be expanded to include hedge fund strategies provided the resulting 

optimal portfolio will not be entirely invested in long positions in less liquid HF strategies. As for 

𝐾𝐾𝑣𝑣𝜏𝜏𝑘𝑘 , we assume that there is both a fixed and a variable component to transaction costs. 

Therefore we model 𝐾𝐾𝑣𝑣𝜏𝜏𝑘𝑘  as a function of the difference between the end- and the beginning-of-

period wealth allocation to the assets, �𝜶𝜶𝜏𝜏𝑘𝑘 − 𝜶𝜶𝜏𝜏𝑘𝑘−1�𝑘𝑘=1
𝐾𝐾−1: 

                                     𝐾𝐾𝑣𝑣𝜏𝜏𝑘𝑘 = 𝜅𝜅𝑓𝑓𝐼𝐼�∃𝑖𝑖 ∋ 𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘≠𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘−1�
+ 𝜅𝜅𝑣𝑣� |𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘 − 𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘−1|

𝑁𝑁

𝑖𝑖=1

                          (20) 

where𝐼𝐼�∃𝑖𝑖 ∋ 𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘≠𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘−1�
= 1 when the condition 𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘 ≠ 𝛼𝛼𝑖𝑖,𝜏𝜏𝑘𝑘−1 is satisfied for at least one i = 1, 

2, …, N (i.e., there is trading in asset i between t 𝜏𝜏𝑘𝑘 − 1 and 𝜏𝜏𝑘𝑘), and 0 otherwise. The first term is 

a fixed fraction of total investor’s wealth that represents the fixed cost of rebalancing the 

portfolio, regardless of the size of the rebalancing. The second term is proportional to the change 

in the value of the asset holdings. Interestingly, under the new wealth process in (19)-(20), the 

inherited portfolio allocation from the previous period, 𝜶𝜶𝜏𝜏𝑘𝑘−1  (which is simply 𝜶𝜶𝑡𝑡−1 in the case of 

buy and hold problems), becomes a state variable when either 𝜅𝜅𝑓𝑓  or 𝜅𝜅𝑣𝑣 is greater than zero, since 

its value determines the transaction costs to be paid at time t.18 Importantly, such framework for 

                                                        
18 As shown in Guidolin and Hyde (2012), also in this case, the Bellman equation may be solved by 
backward recursion, using Monte Carlo methods. The only difference with respect to the case of 𝜅𝜅𝑓𝑓 = 𝜅𝜅𝑣𝑣 =
0 is that a Monte Carlo approximation of the expectation will have to recognize that the of the portfolio 
shares also affects 𝐸𝐸𝜏𝜏𝑘𝑘[𝑄𝑄�𝒛𝒛𝜏𝜏𝑘𝑘+1 , 𝜏𝜏𝑘𝑘+1�]. This turns the maximization in a fixed-point problem that can be 
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transaction costs characterizes them as costs imposed ex-ante on the problem, i.e., the investor 

acknowledges the presence of the costs and solves her problem being aware that whenever a 

portfolio re-shuffling implies transaction costs that exceed the expected utility gain derived from 

the change in asset allocation (taking into account that a portfolio revision today also affects 

future wealth and potential transaction costs to be borne), the investor will refrain from trading. 

This sophisticated scheme of transaction cost imputation may create a no-trade region that 

reduces portfolio turnover. Because marginal trades often relying on modest moves in either the 

perceived future investment opportunities or on minor changes in estimated parameters, tend 

to lead to fragile asset allocations that are often punished in OOS experiments, the ex-ante nature 

of the transaction costs in our paper makes it even possible that realized performances 

(including mean returns) may ex-post increase when transaction costs are modelled, even 

though trading will imply that the very costs need to be paid. 

In our application, we set 𝜅𝜅𝑓𝑓  = 0.025%, 𝜅𝜅𝑣𝑣 = 0.15% in the case of the traditional, more liquid 

assets that in fact can be traded through virtually costless exchange traded funds over all of our 

OOS period. These selections are approximately ¼ of the values assumed by Balduzzi and Lynch 

(1999) as justified by the subsequent research they has reported a visible decline in trading costs 

on all major US markets and security types, including equity and bond indices. We double these 

values for 𝜅𝜅𝑓𝑓 and 𝜅𝜅𝑣𝑣 when these are applied to HF strategies, because these need to be traded 

using less liquid and virtually costlier over-the-counter index-linked notes. In the following, 

transaction costs will be always taken into account. We shall consider the case in which there 

are no transaction costs as a robustness check, which is of interest to either Readers that put a 

strong belief on a different modelling of transaction costs or as a way to estimate the maximum 

economic value of HF strategies irrespective of the higher transaction costs they imply. 

2.4 Out-of-sample performance measurement 

We assume a 5-year investment horizon (H) that balances the usefulness of a relatively long 

investment horizon with the need to have an adequate OOS period available to assess alternative 

                                                        
easily solved on a sufficiently dense grid. 
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portfolio strategies. We perform recursive OOS experiments using the optimal weights obtained 

by numerically solving the problem in (15) under the conditions in (16) which have been shown 

to hold under power utility. We take the period 2004:01–2019:12 as our (pseudo) OOS period in 

which we estimate realized performances recursively. Importantly, such a period includes both 

pre- and post-Great Financial Crisis data but excludes the Covid-19 market turmoil that might 

have advised us to adopt an explicit regime-switching strategy. We assume that investors may 

choose to either follow a 5-year buy-and-hold strategy (optimal only when investment 

opportunities are constant but often efficient because it leads to lower turnover) or rebalance 

their portfolio on a monthly basis, which is optimal under time-varying investment 

opportunities. If rebalancing is pursued, investors are given the possibility to fully exploit the 

predictability captured by the vector 𝒛𝒛𝑡𝑡: the first investor allocates her wealth starting in 2004:01 

according to the corresponding optimal weights and adjusts her exposure at the beginning of 

each of the next 60 months. The second investor acts in the same way as the first, although 

starting and ending one month later, etc. This is repeated until T – H. When the investor simply 

implements a buy-and-hold strategy, the weights computed at time t are held for H months before 

the optimal portfolio structure is re-estimated in the light of new data. 

We assess the realized OOS performance at the end of the investment horizon for each investor 

using two metrics: the CER and the Sharpe ratio. The CER is the riskless return that makes 

adopting a portfolio rule as attractive as cashing in a safe return equal to the CER. A negative CER 

would signal the investor’s willingness to pay to avoid a risky strategy: 

 �(1 − 𝛿𝛿)𝑡𝑡
𝑇𝑇−𝐻𝐻

𝑡𝑡=1

𝐸𝐸𝑡𝑡 �
�̂�𝐶𝑡𝑡
1−𝛾𝛾(𝜶𝜶�𝑡𝑡)
1 − 𝛾𝛾 � = �(1 − 𝛿𝛿)𝑡𝑡

𝑇𝑇−𝐻𝐻

𝑡𝑡=1

𝐸𝐸𝑡𝑡 �
�̃�𝐶𝑡𝑡
1−𝛾𝛾

1 − 𝛾𝛾�, (21) 

where �̃�𝐶𝑡𝑡 ≡ (1 − 𝛽𝛽𝐶𝐶𝐸𝐸𝑅𝑅𝐻𝐻
1−𝛾𝛾)/[1 − �𝛽𝛽𝐶𝐶𝐸𝐸𝑅𝑅𝐻𝐻

1−𝛾𝛾�
(𝐻𝐻−𝑡𝑡+1)/𝛾𝛾

] is the consumption stream derived from 

a riskless strategy paying a monthly return of CER𝐻𝐻, for the entire holding period H.  

For completeness, we also evaluate model performance using a more conventional H-period 

Sharpe ratio, which is the ratio of the excess mean return to the standard deviation of the 

portfolio being evaluated: 
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 𝑆𝑆𝑅𝑅𝐻𝐻 ≡
𝑅𝑅𝑝𝑝,𝐻𝐻 − 𝑅𝑅1,𝐻𝐻

𝜎𝜎𝑝𝑝,𝐻𝐻
, (22) 

where 𝑅𝑅𝑝𝑝,𝐻𝐻 and 𝑅𝑅1,𝐻𝐻 are the cumulative returns (over H months) on the portfolio and on the 

benchmark, short-term security, respectively, while 𝜎𝜎𝑝𝑝,𝐻𝐻 is the volatility of cumulative portfolio 

excess returns. We deem the CER the most appropriate realized performance measure because 

it is a function not only of the underlying return generating process but also of the investor’s 

preferences. Moreover, the Sharpe ratio may be biased by high serial correlation in HF returns 

due to illiquidity and returns smoothing (Getmansky et al., 2004; Khandani and Lo, 2011). 

The OOS recursive design proceeds as follows. In a first step, we compute the optimal portfolio-

consumption rules for an investor who has no access to HFs but is otherwise well diversified 

across stocks, long-term government bonds, corporate bonds, and real estate (i.e., the baseline 

asset menu). Assuming either one or two lags in the VAR models, using up to (i.e., also the realized 

OOS performance of lighter models that include less predictors is examined) four predictors 

selected among the default spread, the term structure spread, the 3-month nominal rate, and the 

dividend yield, and two different sample selection methods (rolling and expanding window), we 

estimate a total of 192 models. The first vector of optimal portfolio weights is estimated using 

data for a 1994:01–2003:12 sample. For the next-period estimation, one additional set of 

monthly observations (referring to 2004:01) is added to the initial sample. This process is 

repeated recursively until the last available observation (2019:12) is included in the analysis. 

While under the expanding window scheme the sample size increases with each new estimation, 

in the rolling-window scheme, it is kept constant at 10 years (120 observations) by rolling the 

sample forward and discarding the oldest observations.19 

The OOS experiment is repeated considering three alternative risk aversion coefficients (γ = 2, 5, 

10). The VAR model that provides the investor with the highest CER is taken as optimal and 

                                                        
19 The use of 10 years of data in the rolling window scheme addresses the investors’ need of protection 
against structural breaks in the underlying predictive relations (Stock and Watson, 1996). We have 
experimented with longer windows with qualitative similar results but a loss of OOS statistically accurate 
evidence as the recursive scheme implied that the first allocation that can be assessed is determined by 
how many initial observations are required. Shorter windows, and in particular the classical 5-year 
moving window are instead unfeasible because of the relatively large parametric size of VAR(2) models. 
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assumed to be the one against which the same investor benchmarks all possible modifications to 

her baseline asset menu. In a second step, we extend the best-performing model (as defined by 

the number of lags, estimation scheme, predictors included, etc.) by including one HF strategy at 

a time along with a set of predictor variables tailored to each strategy. This occurs separately for 

each of three values of 𝛾𝛾. We thus estimate 17 VAR models for each of the ten HF strategies, each 

of the three values of the coefficient of risk aversion and each of the two types of recursive OOS 

experiments performed (i.e., rolling and expanding windows); this yields a total of 1020 

alternative VARs.20 

Finally, by comparing the CER obtained in this second stage with the CER of the initial best-

performing VAR, we are able to give a data-driven answer to our research question — that is, 

whether or not extending strategic asset allocation to include HFs is desirable to a long-term 

investor who is already well diversified across a broad spectrum of both classical and alternative 

asset classes. Additionally, our research design allows us to answer the question of which HF 

strategy yields the highest utility gains.21 

3 The data 

This section summarizes the data on the baseline and extended asset menus and the 

corresponding predictors, and describes how our choice of the HFR indices tries to minimize the 

effect of the biases prevalent in HFs data. The selection of the January 1994 - December 2019 

sample is driven by the availability and characteristics of the HFs data.22 

                                                        
20 The vector 𝒛𝒛𝑡𝑡 in (2) includes the baseline assets, the HF strategy under investigation, the best-
performing predictors for the baseline menu, and up to four strategy-specific predictors, for a total n + m 
that ranges between 5 and 13.The 17 VAR models cited in the text encompass the 16 combinations of the 
four predictor variables (including the case when only the baseline asset predictors are included, without 
any specific variable for the hedge strategy) and a pure AR process without additional predictors (𝒚𝒚𝑡𝑡+1=1 
for all t). 
21 For comparison purposes, optimal allocation and realized performances are also reported for a Gaussian 
IID underlying return generating process (i.e., constant investment opportunities). Our CER spread 
estimates are of course model-driven, even though the combination of an extensive search over predictors 
and the addition of HF-specific predictors ought to guarantee some degree of robustness. 
22 Our sample is sufficiently well-balanced as it encompasses major macroeconomic and idiosyncratic 
events that affected all asset classes under consideration (e.g., the 1997-1998 Asian crisis, the 1998 
Russian default and LTCM fall, the technology bubble, the 2008-2009 financial crisis and the subsequent 
recovery, and the 2013 taper tantrum). Optimizing portfolio choices in such a context enables us to 
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3.1 Baseline asset menu 

We use the 1-month T-bill rate, the CRSP value-weighted equity index (inclusive of dividends), 

the CRSP/Ibbotson 10-year US government bond index, the FTSE NAREIT Composite Index, and 

the Barclays Long U.S. Corporate Total Return Index to proxy for our five baseline asset classes.23 

The Barclays long-term corporate bond index tracks the performance of US corporate bonds with 

maturities of 10 years or greater, and the FTSE NAREIT index is an indirect index built on all tax-

qualified REITs.24 

In a manner consistent with the literature, we use four predictors to model the time variation in 

investment opportunities as defined by our baseline asset menu. In line with Avramov et al. 

(2013) and Campbell et al. (2003), we employ the dividend yield, whose forecasting ability with 

respect to equity returns has been demonstrated at least since Rozeff (1984) and Campbell and 

Shiller (1988). The predictive power of the dividend yield extends also to other asset classes, 

including corporate bonds (Fama and French, 1989) and REITs (Karolyi and Sanders, 1998; 

Fugazza et al., 2009). Second, following Fama (1981), we use the short-term riskless interest rate 

proxied by the 3-month Treasury constant maturity rate. Third, we rely on the term spread, 

which is calculated as the difference between the 10-year Treasury constant maturity rate and 

the corresponding 3-month rate. The predictive power of the term spread concerns not only 

excess bond returns (Fama, 1990), but also the state of the economy at large and thus other asset 

returns (Campbell, 1987). Finally, we include the default spread computed as the yield 

differential between Moody’s seasoned Baa and Aaa corporate bond portfolio rates. Keim and 

Stambaugh (1986) find that default spreads are able to predict corporate and government bonds 

as well as stock returns, while Fugazza et al. (2009) and Ling, Naranjo and Ryngaert (2000) point 

to the predictive power of both the term spread and the default spread for to REIT excess returns. 

Panel A of Table 1 presents key descriptive statistics for the baseline menu asset returns and 

                                                        
evaluate how well the models perform in bull and bear markets and whether they can adjust over time. 
23 The data on monthly asset returns and predictor variables are obtained from CRSP, Datastream, 
Bloomberg, the web site of NAREIT, and the Federal Reserve Bank of St. Louis’ FRED. 
24 The use of FTSE NAREIT returns is in line with the literature on real estate predictability (see, e.g., 
Fugazza, et al. 2009), which opts for an indirect measures over direct-appraised and transactions data. 
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their predictors. The monthly (annualized) average excess log-returns in our sample are 0.53% 

(6.41%), 0.28% (3.37%), 0.39% (4.65%), and 0.83% (9.92%) for stocks, government bonds, 

corporate bonds, and REITs, respectively. Not surprisingly, higher monthly mean returns 

correspond to higher estimates of volatility: 4.50% (15.58%), 2.03% (7.04%), 2.62% (9.08%), 

and 5.72% (19.82%). Interestingly enough, stocks show the lowest unconditional monthly 

Sharpe ratio (0.12), corporate bonds the highest (0.15), with long-term Treasuries and REITs 

falling in between (0.14). The fact that bonds command higher Sharpe ratios than stocks is driven 

by the inclusion of the post-crisis, 2009-2014 period in our sample, with declining rates and FED-

driven support to the bond market. Kurtosis is well in excess of three for all returns, skewness is 

on average negative, and as a result, the Jarque-Bera test points to the rejection of normality for 

all asset classes and predictors. 

3.2 Extended asset menu 

Perhaps the most important issue endemic to HF data is the selection bias that stems from the 

lack of reporting standards and, consequently, from the discretionary decisions by HF managers 

as to whether to report the returns and to which databases (see, e.g., Fung et al., 2008, Akien et 

al., 2012). This leads to a limited comparability among various hedge strategy performance 

indices, which is further exacerbated by the providers’ disparate choices with respect to 

weighting and fund inclusion thresholds and characteristics (e.g., Titman and Tiu, 2010). 

Although Agarwal et al. (2013) suggest that the incentives underlying the choice of whether to 

submit data to an index provider may skew an index return either upward (i.e., returns are more 

likely to be disclosed after a positive track record) or downward (i.e., returns are less likely to be 

disclosed after a positive track record to preserve confidentiality or to avoid broadening the 

investor base), Aiken et al. (2013) compare reporting and non-reporting funds and conclude that 

the net selection bias is positive — i.e., it leads to an overestimation of HF returns.25 

                                                        
25 Other biases that can significantly distort the true representation of hedge funds returns include 
backfiling (or instant history), survivorship, liquidation, and incubation biases, see Agarwal et al. (2015) 
for a discussion and review of the literature. However, Edelman, Fung and Hsieh (2013) have recently 
issues some re-assurances on the reliability of standard data sets as they find that the performance 
measures for mega hedge fund management companies that collectively manage over 50% of the 
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Because our goal is establish estimated bounds to the economic value of HF strategies, and the 

literature has generally concluded that on a net basis, these biases may tilt upwards the recorded 

HF returns (and bias downward the estimable volatility, because of the smoothing effects of 

positively serially correlated returns) in commercial data bases, we use the HFRI style indices 

distributed by Hedge Fund Research (HFR) as proxies for HF strategies. HFRI data are (i) net-of-

fees, (ii) available starting from 1990 on a monthly basis for most of the main strategies and sub-

strategies, (iii) compiled using data on both surviving and non-surviving funds, (iv) 

encompassing both closed and open funds, and (v) obtained after imposing either a minimum 

threshold of $50 million of assets under management (AUM) or a track record of more than a 

year. Importantly, no backfilling bias plagues the HFRI indices. Moreover, HFR provides, within 

the limits of the AUM thresholds imposed, a rather comprehensive coverage of the HF universe. 

To some extent (see the discussion in Tuchschmid et al. 2010), HFRI indices are investable via 

synthetic replication products (see Boigner and Gadzinski, 2013). Our sample starts in in 1994 

because after that year the HFRI’s survivorship bias is virtually non-existent, as the track record 

of non-surviving funds has been retained since that year (e.g., Liang 2000). The selection bias in 

HFRI is less severe than with other sources of hedge index returns and HFR makes documented 

efforts (e.g., by directly contacting the managers and investors) to minimize liquidation bias. 

In our empirical work, we focus on ten HF style indices that have been most frequently used in 

the literature (see, e.g., Fung and Hsieh, 2002a, Agarwal and Naik, 2004, Boyson, Stahel and Stulz, 

2010, Panopoulou and Vrontos, 2015). Our dataset includes the two flagship indices (Fund 

Weighted Composite Index and Fund of Funds Composite Index), all four main strategies (Equity 

Hedge, Event Driven, Global Macro and Relative Value), and four sub-strategies—Equity Hedge 

Equity Market Neutral, Event Driven Merger Arbitrage, Event Driven Distressed/Restructuring 

and Relative Value Fixed Income Convertible Arbitrage.26 

                                                        
industry's assets that do not report to commercial databases are similar to those of funds reporting. 
26 Definitions and methodologies of construction of each composite index and each style category can be 
found at https://www.hedgefundresearch.com/indices. HFRI Indices are investable via synthetic 
replication products and there is some evidence that such products are traded over-the-counter, see 
Tuchschmid, Wallerstein and Zaker (2010). 
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As hinted at in Section 2, we include in our analysis predictors that are tailored to each strategy 

in addition to the four predictors used for the benchmark assets (i.e., the dividend yield, the 

short-term bill rate, the default spread, and the term spread), which recent literature has shown 

to have forecasting power for HF excess returns as well (see Avramov et al., 2011, Bali et al., 2012, 

2014). To model the time-varying risk premia in the excess returns on the two flagship HFRI 

indices we follow Fung and Hsieh (2004) and use the Fama-French size factor (SMB), the CBOE 

S&P 500 BuyWrite Index (henceforth BMX, consistent with the corresponding Bloomberg ticker), 

Carhart’s momentum factor, and a commodity trend-following factor.27 For the HFRI Macro 

strategy, we employ the SMB, the BMX and the commodity and currency trend-following factors. 

To forecast the Equity Hedge, Equity Market Neutral, Event Driven, Merger Arbitrage and fixed 

income Relative Value/Arbitrage excess returns we use the SMB, BMX, Fama-French value factor 

(HML), and the momentum factor (see, e.g., Fung and Hsieh, 2002a, Agarwal and Naik 2004, 

Wegener et al. 2010), except for replacing the momentum factor with a bond trend-following 

factor when predicting the Event Driven strategy. Distressed/ Restructuring and Fixed Income 

Convertible Arbitrage are found to be best predicted by the default spread (as in Bali et al. 2014), 

the SMB, and by bond and short-term interest rate trend-following factors (e.g., Fung and Hsieh, 

2002b, and Hamza et al., 2006). 

The descriptive statistics for the extended asset menu and the HF predictors are reported in 

Panel B of Table 1. Monthly average excess log-returns on the 10 HF strategies range from 0.21% 

(funds of funds, FoF) to 0.57% (event driven). Equity hedge strategies have the highest monthly 

standard deviations (2.58%), while equity market neutral strategies have the lowest (0.85%). 

The merger arbitrage strategy registers the highest Shapre ratio (0.39) and FoF the lowest (0.13). 

Yet, for 9 of the 10 strategies/indices under investigation, the full-sample Sharpe ratio exceeds 

the highest Sharpe ratio for traditional assets (0.15). Also, in panel B, excess returns are highly 

non-normal (consistently with well-known evidence, e.g., Mitchell and Pulvino, 2001) and are 

                                                        
27 BuyWrite is an option strategy combining a long position on the S&P 500 index with a short position on 
the near-term call on the same index. From the put-call parity, the strategy is equivalent to writing a put 
option on the S&P500 and investing the premium at the risk-free rate. 
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characterized by positive excess kurtosis and negative skewness (Anson, Ho and Silberstein, 

2007). The returns on the four trend-following factors, the SMB factor, and the macro HF index 

display positive skewness. Interestingly, the short-term rate trend-following factor posted triple-

digit monthly returns during the financial crisis, which shows it can capture flight-to-quality 

phenomena. 

Table 2 reports pairwise linear correlations for the portfolio return series under consideration. 

Excess returns are generally weakly correlated not only in the baseline asset menu but also in 

the extended menu, suggesting that the diversification into of HFs may improve the overall 

portfolio performance. However, we observe that event driven and a few other HF strategies’ 

correlation with stocks exceeds 0.8, which may attenuate the potential benefits of extending the 

baseline asset menu, at least in their case. 

4 Preliminary results for the baseline asset menu 

4.1 Linear predictability of returns 

Table 3 presents the parameter estimates, as well as the correlation matrix of the residuals for a 

full VAR(1) model estimated on the full, 1994:01–2019:12 sample. For every asset and predictor, 

the table reports the bias-adjusted estimates, the original OLS estimates, and the associated t-

statistics. Two remarks are in order. First, small-sample bias is particularly severe for the 

dividend yield coefficient in the VAR equation for excess stock returns, where the corrected 

coefficient (0.917) is less than half the (biased) OLS estimate (1.890). Other parameter estimates 

are similarly affected (e.g., the short rate in the stock equation and again the dividend yield 

estimated coefficient in the excess REIT equation), although the differences are not always 

statistically significant. With very few exceptions, the bias-adjusted estimates tend to be smaller 

in absolute value vs. the unadjusted ones. Second, and especially when bias adjustment is 

performed, the overall evidence of linear predictability of excess returns is rather weak, as 

evidenced by the low R2 for most of the equations for excess returns in the VAR (the exception is 

short-term bill returns, as one may expect). In fact, the majority of the t-statistics lie outside the 

rejection region for the 5% significance level. Notable exceptions are excess stock returns, which 
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seem to be well predicted by past values of the dividend yield and the term spread, and excess 

long-term government and corporate bond returns, which are positively driven by one lag of the 

term spread. These results are similar to the results in Campbell et al. (2003) and should be 

assessed in light of the burgeoning literature pointing to the disappearance of linear 

predictability in the returns of stocks and bonds (e.g., Pesaran and Timmermann 2002, Welch 

and Goyal, 2008). Finally, all four predictor variables can be approximately described by unit root 

AR(1) processes, even though, as a whole, the estimated VAR(1) model is stationary. The 

distortions implied by the high persistence of the predictors are partially mitigated by the bias-

correction technique. 

4.2 Strategic asset allocation: total and hedging demands 

Table 4 presents sample means, standard deviations, and the 90% empirical ranges for the 

monthly recursive portfolio weights computed following the recursive scheme described in 

Section 3. These weights summarize how a risk-averse investor with intermediate risk aversion 

(γ = 5) should have optimally allocated her wealth across 1-month T-bills, stocks, long-term 

government and corporate bonds, and REITs in the 16 years between 2004 and 2019. Since it is 

unfeasible to report the statistics for all 192 VAR models estimated for this “reference” investor, 

we have selected the ten models that are found to yield the highest CERs (computed in the next 

section). Table 4 shows that when the horizon is short or the investor is myopic (so that short-

and long-run portfolio shares are the same as no predictability may be exploited), the average 

weights are strongly tilted in favor of public real estate while, at least in some of the top ten 

strategies, 1-month T-bills are occasionally shorted to create leverage and invest in both stocks 

and REITs;28 the demand for all types of bonds, especially Treasuries, tends to be modest and the 

latter are used in some strategies to leverage the portfolio. The sample historical mean of weights 

turns a bit different under a 5-year horizon (with monthly rebalancing) because under many (but 

                                                        
28 In Table 4, the hedging demands of myopic investors (i.e., operating under constant, IID investment 
opportunities) are not identically zero because of approximation errors implied by the fact that under 
power utility, the portfolio problem is solved numerically, approximating expectations by Monte Carlo 
methods. 
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not all) strategies, the demand for stocks and corporate bonds turns decidedly positive and large, 

which therefore reflects sizeable hedging demands for these assets; because the demand for real 

estate is hardly affected by the horizon, this shift towards and stocks and corporate debt is 

financed by shorting Treasury bonds, independently of their maturity. In any event, especially 

when H = 60 months, (average) optimal portfolio shares vary widely across model specifications. 

For instance, according to an expanding VAR(2) including the default spread and the dividend 

yield as predictors, a long-horizon investor should build a portfolio which, on average, is long 

168% in stocks, 167% in REITs, 82% in corporate bonds, and is short 164% in T-bills and 152% 

in long-term Treasuries. On the other hand, when in this specification the VAR lag order is 

reduced to one, the same investor would have held—both under a short and long investment 

horizon—a portfolio massively tilted towards REITs (87% for T = 60 months), with smaller 

stakes in equities (9%), cash (2%), and puny shares in corporate and Treasury bonds (1%); 

moreover, her hedging demands would have been negligible on average (between -4 and 1 

percent only). 

The average hedging demands (i.e., average differences between long- and short-horizon optimal 

weights that hedge portfolio performance against future changes in investment opportunities) 

are also quite heterogeneous across different frameworks that capture predictability. However, 

they generally tend to be moderate in the case of stocks and REITs. One aspect of our research 

design that contributes to this effect is the small-sample bias correction of the intercept and of 

the slope parameter estimates reported in Table 3, that we saw to be of a first-order impact in 

the cases of equities and real estate. These parameters, together with the correlation matrix of 

the residuals terms, govern the relative speed of reversion to the mean by excess returns (see 

Barberis, 2000). Because such reduced forecast follows a negative excess return shock, this 

means that the long-run mean-reversion speed of the asset class is reduced. For the 192 VARs 

models entertained in our paper, average hedging demands are usually zero or negative for 1-

month T-bills and government bonds, and positive for corporate bonds and stocks. Interestingly, 

and consistent with Hoevenaars et al. (2008), in the case of REITs, the difference between total 

and myopic demands tends to be almost null, pointing to a flat term structure of risk. 
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Table 4 shows that recursive optimal weights change not only across models but also over time: 

both the reported standard deviations and 90% empirical ranges suggest that there are periods 

in which average leverage is magnified and the sign of the weights changes frequently. Such a 

pattern is in line with what has been systematically documented in studies on linear 

predictability (e.g., Brandt and Santa-Clara, 2006, and Fugazza et al., 2009, when real estate is 

included). In contrast, the Gaussian IID models produce the least volatile allocations. This is 

explained by the fact that in this case, the time variation in weights derives only from the 

updating of the sample estimates and not from the fact that the investment opportunities are 

explicitly recognized to be time-varying. 

Much of our discussion so far has concerned the case of γ = 5, but the same qualitative insights 

also apply to the recursive OOS results obtained assuming either γ = 2 or γ = 10.29 The most 

notable differences concern the fact that while the sign of the average total portfolio allocations 

to the five asset classes is preserved across the three values of γ, the size is directly proportional 

to the investor’s risk tolerance (1/γ). More conservative investors (γ = 10) are generally less 

leveraged and tend to tilt their portfolios towards long-term government bonds while shunning 

stocks and demanding a less extreme share of REITs. Mildly risk-averse investors (γ = 2) instead 

attach large and positive weights (usually above 100%) to these risky assets, also borrowing in 

the corporate credit market. Dispersion measures are also proportional to the investor’s risk 

tolerance, suggesting bigger spikes in the time series of portfolio weights for less risk-averse 

investors. 

4.3 Realized portfolio performance and optimal allocation 

Table 5 presents the realized performance measures obtained in the recursive OOS experiment 

for an investor with intermediate risk aversion (γ = 5).30 The top panel analyzes the buy-and-

hold case while the bottom panel pertains to the recursive, monthly rebalancing strategy. The 

                                                        
29 These results are not tabulated due to space considerations but are available in an Internet Appendix, 
or from the Authors upon request. 
30 Tabulated results for γ = 2 and γ = 10 are in the Internet Appendix. Our findings are robust across 
different levels of the relative risk-aversion. 
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table reports the annualized mean, volatility, Sharpe ratio and CER of the portfolio rules implied 

by the VARs and the Gaussian models. The last two columns report the skewness and kurtosis of 

realized portfolio returns, thereby providing a more comprehensive view of the realized 

distribution of returns. The realized CER rankings in Table 5 are used to determine the best-

performing model against which we benchmark the marginal contributions of HF strategies. 

Table 5 shows that an investor who chooses to follow a simple buy-and-hold strategy attains, on 

average, lower CERs (0.26% per year) than an investor who rebalances on a monthly basis 

(2.97% per year). In fact, there is not a large difference between the typical CERs of the the two 

Gaussian IID models (0.45% for the expanding and 0.43% for the rolling window) when a buy-

and-hold strategy is pursued, while the best-performing VAR produces a barely higher CER of 

0.48% per year,. These CERs are all lower than the annual average yield on 1-month T-bills. This 

is expected: a fixed proportions buy-and-hold strategy is indeed optimal only when investment 

opportunities are constant and Table 3 did offer persuasive evidence that the investment 

oppourtinities are predictable, at least to some extent. This result is driven by the considerably 

negative skewness and high positive kurtosis of realized portfolio returns, which are fully taken 

into account by the investor’s power utility function. Because of this poor performance of buy-

and-hold portfolio vs. the monthly rebalanced ones, in the rest of this paper we shall focus our 

attention on the more realistic case with rebalancing, even though complete (and leading to 

qualitatively similar results, just generally disappointing in terms of the CERs obtained) 

calculations are available upon request for the buy-and-hold case. 

Whereas buy-and-hold strategies optimized on the ten best VARs result in disappointing average 

performances characterized by rather large realized volatility, monthly rebalancing enables the 

investor to substantially improve CERs also because of a somewhat lower realized volatility as 

reflected in the narrower 90% bootstrapped confidence intervals.31 The bottom panel of Table 5 

shows however that—because an investor is allowed to discount her own future learning on the 

Gaussian IID distribution of excess asset returns (see Barberis, 2000)—it is the two constant 

                                                        
31 The 90% confidence intervals are calculated by means of a block bootstrap technique with a block size 
equal to 12 monthly observations and 10,000 simulated paths. 
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investment opportunities models (expanding and rolling window Gaussian IID) that achieve the 

highest CERs of 9.4% and 6.4% per year, respectively. These are followed by a range of VAR(1) 

models, mostly estimated on a 10-year rolling window of data, and generally including a 

relatively large number of predictors (always the default spread and quite often the dividend 

yield); these lead to realized OOS CERs between 5.5 and 6.5 percent per year. These findings 

generally align with earlier linear predictability OOS studies applied to US data (see, e.g., 

Brennan, Schwartz and Lagnado, 1997; Guidolin and Hyde, 2012) that, on traditional asset 

menus composed of stocks, bonds, and real estate, found that the economic value of predictability 

may turn elusive especially when transaction costs are accounted for, as we do in this paper.  

5 Main results: portfolio selection extended to hedge fund strategies  

5.1 Linear predictability of hedge fund returns 

Table 6 exemplifies our procedure by presenting parameter estimates and the residual 

correlation matrix for the best-performing VAR model for γ = 5 as specified in Table 3 now 

extended to include, for starters, excess returns on the HF weighted composite index (FWC).32 

The model is a VAR(1) estimated using an expanding window scheme on a sample up to 

December 2019 and includes six predictors: the term spread, the short-term rate, the dividend 

yield, the S&P 500 BuyWrite index returns, HML, and momentum. Table 6 reports the bias-

adjusted estimates, the original OLS estimates, and the associated t-statistics. Bias adjustment 

plays an important role in this extended asset space, just as it does in the baseline menu. This is 

particularly evident from the dividend yield coefficients in the equations for the risky excess 

returns: for example, in the excess stock returns equation, the biased coefficient is almost four 

times the bias-corrected coefficient. We expect that such a reduction in value (relative to the 

biased estimates), when combined with the negative residual correlations between unexpected 

stock returns and unexpected changes in the dividend yield, would translate into a slower rate of 

mean-reversion which, in turn, is likely to command smaller hedging demands for most risky 

                                                        
32 This procedure is repeated for each of the ten hedge fund strategies and the three values of the relative 
risk-aversion coefficient. 
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assets. As a result, correcting for the bias makes stocks (and to some extent, REITs) less attractive 

for hedging intertemporal stochastic changes in future returns. While a similar effect is generated 

by bias-adjusting the dividend yield coefficient in the FWCt+1 equation, the opposite effect is 

obtained in the Corpt+1 and REITt+1 equations, where the speed of mean-reversion grows. The 

unadjusted OLS coefficients for the term spread are also considerably biased, especially in the 

case of government and corporate bond excess returns. Focusing on the FWCt+1 equation, which 

also flaunts the highest R2 among the excess returns equations, now also the lagged stategy 

excess return implies a positive and statistically significant coefficient. This finding may be 

explained by positive serial correlation stemming from exposure of the hedge strategy to security 

payoffs that are not actively traded, as documented by a literature since at least Getmansky et al. 

(2004). Interestingly, the returns on the BuyWrite strategy seem to be explained, at least partially, 

by past HF index excess returns. 

5.1 Strategic asset allocation: total and hedging demands 

We compute monthly recursive OOS portfolio weights for the extended asset menu. Similarly to 

Section 4.2, we discuss in detail the results for an investor characterized by intermediate risk 

aversion (γ = 5) who allocates her wealth across 1-month T-bills, stocks, long-term government 

and corporate bonds, REITs, and a HF strategy. To individually assess the economic value of each 

of the HF strategies, we include them in the asset menu one at the time, from a starting pool of 

ten strategies.33 For each of the resulting ten portfolios, Tables 7 through 9, as well as additional 

tables in an Internet Appendix (see, e.g., A1 and A2), report sample means, standard deviations, 

and the 90% realized range for monthly recursive OOS portfolio weights for the ten models that 

provide the investor with the highest CERs when the asset menu is expanded to each of the ten 

HF strategies, one at the time. 

                                                        
33 Tabulated results for investors with γ = 2 and γ = 10 are available from the authors upon request and in 
an on-line Appendix. Much of the discussion for γ = 5 applies to the cases of γ = 2 and γ = 10 with the usual 
caveat: the average portfolio leverage and standard deviations turn out to be proportional to risk tolerance 
(1/γ). Interestingly, at least in the case of γ = 5 and 10, the best models give positive weight to HF strategies 
across the board of our OOS period, which allows us to skim over the fact that a few strategies—barring 
their outright replica (see, e.g., O’Doherty et al., 2016)—would be hard to short because HFR indices are 
not (always and reliably, see Getmansky et al., 2015) traded as shortable exchange traded notes. 
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Comparing Tables 6-8 with Table 4, we note that the inclusion of HF strategies in the portfolios 

prompts a dectetable (yet, never massive) shift away from public real estate and into long-term 

Treasuries and—especially when the excess returns on relative value HF strategies (RVR) are 

considered—hedge fund shares. In general, even over and beyond what is displayed in these 

tables, it is a few, distinctive HF strategies that attract the largest mean portfolio weights over 

our sample (especially RVR, equity market neutral, and funds of funds styles). All in all, even 

when the average demands for HFs fails to massive, the four traditional risky assets are affected 

only to a modest degree relative to the baseline portfolio in Table 4, even though the extended 

portfolios are on average not as long in REITs as we had previously reported. While under the 

baseline asset menu, the government bonds are largely neglected or even shorted, the opposite 

happens with three out of the ten HF strategies investigated, i.e., in the case of fixed income 

relative value (Table 8), event driven, and distressed restructuring strategies. Mean hedging 

demands for HFs are positive (but modest) because their excess returns are generally predictable 

and mean-reverting at a speed that tends to be slower than other asset classes, so that this 

alternative asset class can be (weakly) used to hedge intertemporal stochastic variations in 

investment opportunities. The resulting term structure of risk is negatively sloped so that long-

horizon investments in HFs may be perceived as (slightly) less risky than short-horizon 

investments. Fund of funds, equity market neutral and merger arbitrage strategies are the only 

strategies showing negative, albeit still modest, hedging demands. 

In some additional detail, Table 6 shows the results for an investor who is allowed to trade the 

HFRI Fund Weighted Composite Index (FWC) along with the baseline menu of assets. This is of 

course key evidence, because it may be argued that FWC represents a weighted average return 

for the whole HF industry. All the top strategies do exploit linear predictability, as none of these 

models consists of Gaussian IID models (this also true of Tables 8 and 9 and will be commented 

further below). In the long run, the optimal weights in this alternative strategy are positive, 

between 3 and 5% and such allocation exceeds the short-horizon weights due to a positive 

intertemporal hedging demand (of 2-3% on average). Positions in the other five assets are still 

heavily skewed towards REITs (with a weight of around 80%), with any remaining wealth 
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distributed almost equally between stocks and long-term bonds (5-9% with small and generally 

negative hedging demands); a negligible weight goes to corporate bonds and cash tends to be 

ignored but not used (with only some exceptions at the long horizon) to leverage.34 Of course, 

HFs themselves may provide (especially when their market beta is positive, as often found in the 

empirical literature, see e.g., Patton, 2008) exposures to equity and Treasury-bond risks, besides 

other types of tail risk-type and non-linear exposures, as documented by Agarwal, Arisoy and 

Naik (2018). For instance, based on the best-performing model (VAR(1) with an expanding 

window and the default spread and the short-term rate included as predictors, a long-horizon 

investor should build a portfolio which, on average, is long 3% in the composite HF strategy, 84% 

in REITs, 6% in stocks, 5% in government bonds, 2% in corporate bonds, and ignore T-bills 

altogether. Such an average allocation is rather stable over the entire OOS period with the 

exception of a few spikes during the financial crisis, as documented in unreported plots and 

shown by the tame realized standard deviationand empirical 90% interval ranges in Table 6. 

When fund of HFs (FFP) is the strategy selected to be tested in addition to the baseline asset 

portfolio, Table 7 shows that a long-horizon investor should, on average, allocates a more 

substantial share to HFs but this exact share becomes more dependent on the selected VAR and 

estimation sample selection scheme, ranging for instance between -31% and 26% for a 5-year 

horizon investor. However, the implied hedging demands remain on average quite modest. Total 

portfolio demands for the other five assets are similar to the baseline case, although in this case 

leverage is occasionally (i.e., in a few strategies) obtained by shorting long-term government 

bonds and especially T-bills. The best-performing model is still an expanding VAR(1) model that 

includes the default spread and momentum as predictors. This strategy requires a long-horizon 

investor to buy fund of HF strategy (8%), REITs (77%), stocks (9%), long-term Treasuries (3%), 

and cash and corporate bonds in equal proportions (1.5%). As in Table 6, portfolio weigths are 

                                                        
34 Such large shares invested in real estate are not completely bizarre. For instance, in a CAPM perspective, 
the official statistics for the US, reveal that in 2020 residential real estate made up about 83.98% of total 
household non-financial assets, 30.64% of total household net worth, and 26.64% of household total 
assets (Financial Accounts of the US, First Quarter, 2020, https://www.federalreserve.gov/releases/z1/ 
20200611/z1.pdf). 
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subject to limted turnover during the OOS period. The insight that funds of funds may generate 

limited economic value and as such may play a limited role in the portfolios of rational, long-

horizon investors echoes earlier findings by Amin and Kat (2003a) and Liang (2004). 

Table 8 presents results for the fixed income relative value/arbitrage strategies (RVR). This 

strategy has been selected and reported in detail because it implies non-negligible optimal 

weights to be assigned on average to the strategy. In particular, the average hedging demands 

characterizing RVR excess returns tend to be positive, which is due to the negative first-order 

serial correlation of RVR excess returns (-0.50) which, combined with a negative slope coefficient 

in the VAR equation, translates current negative innovations in RVR into higher predicted 

returns. The best-performing VAR (which lists four predictors, i.e., the default spread, the short-

term rate, SMB, and the returns on a portfolio of commodity look-back straddles) is the top 

performer in terms of realized CER among not only the 17 models estimated for the RVR strategy, 

but also as compared to all models of all HFs investments. According to this rich VAR, a long-

horizon investor should allocate 15% of her wealth to RVR HF strategies, 68% to REITs, 9% in 

stocks, 7% in long-term government bonds, and 1% in corporate bonds. 

As expected, the inclusion of Global Macro HFs (MAC) reduces exposures to stocks, REITs, and 

corporate bonds at both long and short horizons, as this strategy tends to also use traditional 

asset classes to take positions supported by macro views.35 Hedging demands are on average 

negative, indicating an increasing term structure of risk. Under the best-performing VAR, which 

includes the three baseline predictors and Fung and Hsieh’s (2004) currency trend-following 

factor, the weights change rather erratically over time, although they fluctuate within relatively 

tight ranges. For an investor wishing to add equity hedge strategies (EQH) to her portfolio, the 

equity exposure is given by the sum of the weights to this alternative asset class and stocks. 

Allocation to stocks is, on average, almost negligible and is used primarily to compensate large 

negative positions in EQH during certain periods. 

                                                        
35 Tabulated results and plots of optimal portfolio weights for Global Macro, Equity Hedge, Event Driven, 
Merger Arbitrage, Event Driven Distressed/Restructuring, fixed income Relative Value and Convertible 
Arbitrage and Equity Hedge Equity Market Neutral strategies are available from the Auhors upon request. 
See, e.g, Tables A3 and A4 in the on-line Appendix. 
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In the case of event driven strategies (EVD), the optimal investment in HFs is positive, in fact, 

under some strategies, in excess of 10% of the total wealth, and short positions are frequently 

assumed in T-bills and corporate bonds to allow the investor to express the same demand for 

REITs found in Table 4, through leverage. In the case of merger arbitrage (MEA), the best-

performing model is the no-predictability benchmark, which implies that both short- and long-

horizon investors should follow the same portfolio rules. Optimizing investors go long in MEA, 

REITs and government bonds while shorting to some extent T-bills and corporate bonds. These 

allocations are the least volatile over the entire OOS period, as one would expect for a Gaussian 

IID model. 

When distressed/restructuring strategies (DSE) are added to the baseline asset menu, the best-

performing VAR is represented by an expanding VAR(1) model including 3 predictors and the 

optimal portfolio weights call for going long in DSE, REITs, stocks, and to some extent, 

government bonds; these positions are financed by shorting T-bills to some extent. Diversifying 

into convertible arbitrage strategies (COA) HF strategies results in relatively small portfolio 

leverage on average, although the weights and level of leverage vary substantially over time. 

These results approximately also extend to equity market neutral (EMN) HF strategies. The best-

performing model in this case implies an optimal portfolio which, on average, is long 8% in EMN, 

69% in REITs, 7% in stocks, 5% in Treasuries, and 13% in corporate bonds, and short 2% in T-

bills. 

5.2 Realized portfolio performances and the economic value of hedge funds 

Our key set of results concerns the realized OOS performance of the extended portfolios for each 

of the three levels of relative risk aversion. For each of the 10 HF strategies under analysis, we 

have analyzed a total of 18 models. These include the Gaussian IID model, the purely 

autoregressive model, and the 16 VARs which can be built for all possible combinations of the 

four new predictors tailored to each HF strategy. Through a comparison of the estimated CERs of 

these 180 models with the CER of 9.41% obtained from the best performing model applied to the 

baseline asset menu, we are able to determine whether or not an allocation to HFs is attractive 
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to a long-term investor who is already well diversified across a broad spectrum of classical asset 

classes. In the following, we do not formally test whether HF-strategies, as a whole, dominate 

traditional portfolios: this would be subject to a clear multiple, overlapping hypotheses testing 

problem best solved adopting techniques from model confidence set estimation and reality check 

testing in econometrics. Instead, we ask a more modest question which, however, represents a 

necessary condition to the measurement of the economic value of HFs to investors: do HF 

strategies exist that generate risk-adjusted performances in excess of the traditional strategies? 

When the composite, value-weighted basket of HF strategies is added to the baseline menu of an 

intermediate risk-averse investor, the best-performing model is represented by an expanding 

VAR(1) that provides an annualized CER, net of transaction costs, of 9.31% (see Table 9) which 

is approximately the same as the baseline asset allocation in Table 5 (9.41%).36 In fact, realized 

skewness and kurtosis of portfolio returns under the optimal strategy are -0.66 and 3.80, 

respectively, while the annualized mean return and volatility are 12.66% and 20.71%. Because 

of the monthly rebalancing, even though HFs returns per se are characterized by a volatility that 

is inferior to equity markets, the resulting market timing strategy may lead to rather risky 

realized OOS performance, at least in terms of recorded second moment. This model leads to a 

relatively “normal”, unremarkable annualized Sharpe ratio of 0.44 vs 0.41 under the benchmark 

but compensates a power utility investor with slightly “better” realized higher-order moments. 

Therefore, at least as far as the weighted composite HF index is concerned, adding aggregate, 

asset-weighted HF strategies to the asset menu does not seem to create major economic value, 

also because—as commented earlier—the impact of the availability of HFs in terms of weights 

assigned to them is rather limited, also to a long-horizon investor. 

In Table 9, a clear pattern emerges among the 18 models entertained with reference to the 

aggregate of the HF strategies: leaner models tend to provide the highest welfare measures. Nine 

models out of 18 produce CERs with a 90% confidence interval upper bound that exceeds the 

                                                        
36 In Table 9, as in all tables reporting the realized performances for asset menus that include HF strategies, 
the performance statisics that improve over the top performance for the benchmark asset menu (i.e., raise 
the mean, lower volatility, increase Sharpe ratio and/or CER, increase skewness, decrease kurtosis) are 
boldfaced. 
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benchmark CER of 9.41% from Table 5, suggesting that there anyway chances for an investor to 

profit from investing in FWC. Yet, the median CER across all expanding VAR remains negative,        

-10.10% per year (vs. 3.15% for the baseline asset menu): picking at random some predictability 

model to be applied to an asset menu that includes a HF index will not bring a positive risk-

adjusted performance to investors. Yet, Table 10 puts in no way an end our empirical task: 

because this strategy is a weighted basket of a number of HF strategies, we can expect to find 

specific HF strategies to give both higher and smaller CERs vs. the best-performing model for 

FWC. 

The results in Table 10 suggest similar results and conclusions for the case of fund of funds 

strategies. The finding that diversified baskets of HF strategies fail to generate substantial 

economic value is in line with the bulk of the early, mean-variance based literature (see, e.g., Amin 

and Kat, 2003a). The highest CER (9.44%), obtained by an expanding VAR(1) model in which the 

predictors are the default spread and the returns on a basket of lookback straddles on interest 

rates, is approximately identical to the CER yielded by the benchmark asset menu but it is 

characterized by a substantially lower Sharpe ratio (0.30) vs. the benchmark. The median 

strategy delivers instead a CER of 7.93% that is more than double the CER obtained by the 

median model in Table 5, and this represents an element of good news in favor of fund-of funds 

strategies. Notably, the table shows that adding funds-of-funds to the menu of choice stabilizes 

the performance (both in terms of realized variance and kurtosis) and induces some degree of 

positive skewness; however, presumably because of their double layer of fees, the realized mean 

is somewhat penalized, to the point that realized Sharpe ratios decline vis-à-vis Table 5, and the 

CER turns out to be essentially identical.37 

On the contrary, and as an example of one specific type of strategy, making an investment in the 

RVR index provides substantial economic value to an investor regardless of the model selected, 

                                                        
37 However, as γ increases, an investor will care less for the mean and more for the risk of the resulting 
distribution of realized portfolio returns (hence, wealth and consumption flows), so that that the distance 
between the top CERs including FFP strategies and those obtained from the baseline asset menu widens. 
We can speculate that for very high values of γ, FFP and FWC strategies may stabilize performance so much 
that they will generate large, positive economic value. 
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except for the no-predictability benchmark (see Table 11). While the lowest-ranked VAR model 

yields a CER of --0.42%, the highest-ranked model provides a CER of 10.7% — the largest value 

among all HF strategies tested in this paper (which is why RVR is presented in detail) and well 

exceeding the baseline asset menu. The best-performing model produces a mean annual return 

and volatility that are above/below the median values (13 and 23% per year), while the resulting 

Sharpe ratio (0.41) is below the median (0.19). Table 11 displays the usual mechanism through 

which a hedge strategy produces economic value: by reducing realized volatility, limiting kurtosis 

and generating positive skewness in returns. The only difference is that RVR does that in a large 

enough magnitude to generate higher CER net of transaction costs vs. the traditional asset menu. 

In fact, the median across expanding VAR models in this case leads to a 5.57% CER, with 90% 

empirical confidence bounds of 3.63 and 7.39 percent per year, so that the median lower bound 

outperforms the median investment scheme under the baseline asset menu in the sense that the 

lower bound when RVR belongs to the asset menu exceeds the upper bound under an asset menu 

that excludes hedge funds. 

Figures 2 and 3 summarize the main results in Tables 5 and 9-11 concerning the comparison of 

economic value estimates obtained with and without HF strategies, and extend our presentation 

of results to all strategies including those collected in the on-line Appendix. Figure 2 compares 

the CER, mean returns, Sharpe ratios, skewness, and kurtosis of the top performing model for 

each hedge strategy, and plots them against the realized portfolio outcomes of the benchmark in 

Table 5. Figure 3 performs the same comparison with reference to median statistics for the 

expanding sample VAR models, selected because they represent the top performing model in 

Table 5. In the top portion of Figure 4 we see that—if investors were able to detect the top-

performing models for the prediction of risk premia—most strategies and, as a result, also the 

composite HFR index, would outperform a classical asset menu on a risk-adjusted basis. In fact, 

even taking the resulting sample uncertainty into account, the only exceptions are the equity 

long-short, equity market neutral, and the fund-of-funds strategies. The equity market neutral 

and relative value strategies give evidence  of a positive CER differential vs. the traditional asset 

menu, while for most strategies the 90% confidence band appears to be approximately centered 
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on the CER estimate from Table 5. Interestingly, most of the realized economic value fails to result 

from a mean-variance improvement: in fact, when combined with classical assets, most (all) HF 

strategies yield realized Sharpe ratios that never exceed and are often inferior (this is the case of 

FFP, EQH, MEA, DSE, and COA) vs. the benchmark. In the case of most strategies, this is a result of 

higher realized volatility because Figure 2 shows that the realized mean portfolio returns are 

generally similar (occasionally higher) than those obtained in the absence of HF in the 

investment opportunity set.38 For instance, while traditional assets only lead to an annualized 

mean return of 12% per month and a monthly Sharpe ratio of approximately 0.41, when the RVR 

strategy becomes available, the realized annual mean return increases by 60 bps and the Sharpe 

ratio is again 0.41. However, HF strategies grossly improve the skewness properties of the 

optimal portfolio from -0.6 to +0.4. It turns out that a long-run investor with γ = 5 cares enough 

for the shape of the entire density of realized performances to considerably tilt her allocation 

towards RVR because these buy positive skew and hence chances of high, right-tail performances 

without inflating the overall thickness of the tails of the distribution. Mechanically, this is possible 

only because the resulting portfolio weights in Table 12 become sufficiently extreme and time-

varying to increase at the same time the resulting portfolio variance, which explains why the 

Sharpe ratio does not improve even though the realized mean is higher than from the best 

strategies in Table 7. 

One tricky aspect of our story is the difference between ex-ante moments (more generally, the 

predictive density of realized consumption flows from the cumulative wealth process) and 

realized, ex-post moments from OOS backtesting. Although separate calculations confirm that a 

γ = 5 tilts her portfolio selection away from classical fixed income securities and towards hedge 

strategies in the way described to trade-off less mean, more variance, a constant or lower Sharpe 

ratio, in exchange for higher skewness and not higher kurtosis on an ex-ante basis, this shift 

appears to actually occur in terms of ex-post realized performance. In other words, an investor 

appears to achieve the desired positive skewness, but she also pays a price in terms of higher 

                                                        
38 See also Figure A1 in the on-line Appendix for direct evidence concerning realized portfolio volatility. 
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realized variance for equal or slightly reduced Sharpe ratio. Yet, the decline in kurtosis that ex-

ante an investor would be looking for, does not seem to fully materialize. 

In unreported plots, we have found evidence similar to Figure 2 for γ = 2 and γ = 10.39 For γ = 2 

(see Tables A7 and A8) we find massively large and positive CERs for a long list of expanding 

VAR(1) models applied to FFP as part of the asset menu. This performance derives realized 

positive skewness and especially to lower realized kurtosis vs. the traditional asset menu in Table 

A1. As in Table A1, realized means are high as a γ = 2 investor is aggressive, but this is more than 

compensated by rather high realized volatilities that eventually deliver disappointing Sharpe 

ratios in OOS experiments (0.20 for the median model). Paradoxically, ex-post an aggressive 

investor who should care a lot for the Sharpe ratio ends up scoring good CERs because of the 

benefits of better realized higher-order moments. With a CER of 18.8%, the best-performing 

model is an expanding VAR(1) that includes the default spread, SMB, and the returns on a 

portfolio of look-back options written on commodities. The results in Table A8 concerning RVR 

are qualitatively similar to both Table A7 and the corresponding Table 12.  

The findings on the empirical economic value of HFs turned more mixed in the case of γ = 10 (see 

Tables A9 and A10 in the on-line Appendix). For instance, as far the FFP is concerned, under an 

expanding window VAR(1) that bases its risk premia forecasts on the default spread, SMB, and 

the returns on a portfolio of look-back options written on commodities, a long-term investor 

would have achieved a realized OOS CER of 9.1% which is below the 15.5% achieved investing in 

stocks, bonds, and real estate only. In fact, in the case of γ = 10, FFP allows the investor to gain 

additional risk-adjusted returns, relative to the baseline asset menu, under none of the VARs used 

to capture time-varying investment opportunities. It is revealing that this occurs when there are 

no measurable improvements in the realized higher-order moments. The same highly risk-averse 

investor can improve her realized utility by investing in EVD, DSE, and COA strategies, and 

especially RVR (see Table A10). This finding is coherent with Agarwal and Naik’s (2000) result 

that—within a portfolio comprising of passive asset classes and investments in nondirectional 

                                                        
39 These figures are available upon request from the authors. 
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HF strategies—the relative importance of passive and alternative portfolios changes as one shifts 

down the risk-return trade-off towards the minimum variance portfolio as the weight of the 

equity class decreases, that of bonds and HF strategies increase; within the very set of HF styles, 

the weight of the directional strategies falls while that of the non-directional strategies rises. 

However, before rushing to a conclusion that for intermediate and low risk-averse investors HF 

strategies are appealing investment opportunities, Figure 3 (that refers again to a γ = 5 investor) 

offers a sobering view. Indeed, Figure 2 had been built under the unrealistic assumption that an 

investor would know in advance what the best performing model (in terms of realized CER) 

would turn out to be ex-post. In reality, this is hardly the case: while academics have been 

heatedly debating whether there is any exploitable predictability in financial returns, a fortiori 

we know much less about what model could represent the “right one” on an ex-ante basis. Figure 

5 has the same structure as Figure 4 but it reports the realized OOS performance of the median 

prediction model for asset risk premia (including, as a special case, the IID no predictability 

model). Picking at random “some model” an investor would have not fared so well unless she had 

known—once more, rather unrealistically—which specific hedge strategy to pick. On the one 

hand, betting on the composite HFR index or on a fund-of-fund strategy leads to median realized 

CERs that are negative and therefore dominated by the simplest of the portfolio strategies: 100% 

in cash at all times; this also applies to the generality of other HF strategies, with the only 

exceptions of the FFP, MAC, and EMN, for which the median model deliver positive CERs of 3-8% 

per year and yet exceeding the small CER found for the traditional asset menu. It seems that 

giving up on the fine-tuning of the predictability model may particularly hurt the strategies that 

just trade equities, such as EQH, DSE, and RVR. Interestingly, and contrary to the best models in 

Figure 2, in the case of the median across predictability models, when the economic value created 

is positive, this comes entirely from an improvement in realized skewness—which remains 

negative but draws close to zero—and kurtosis, which drops to the range 3-5; in fact, all realized 

means decline and realized variances increase vs. the benchmark (see also Figure A1 in the on-

line Appendix), which leads to considerably lower Sharpe ratios. 

Figure 4 uses the same plots that we have featured in the Introduction to provide a visual 
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summary of our key empirical findings in this section. In each of the panels, the dotted, red lines 

parallel to the axes mark the realized CER and Sharpe ratio obtained by the benchmark optimal 

allocation to traditional assets obtained from the best, Gaussian IID model. Each HF strategy is 

represented by a circle the center of which is positioned in correspondence to the coordinates 

given by realized Sharpe ratio and CER and whose radius/diameter is proportional to the Jarque-

Bera statistic, which is a weighted sum of realized skewness and excess kurtosis. In each panel, 

the shaded area in the north-western region, collects combinations of Sharpe ratios and CERs 

that jointly outperform the benchmark, marked by the red, boldfaced circles. Clearly, when an 

investor is allowed to select the best prediction model for excess returns, three strategies follow 

in this golden region. As commented before, a majority of HF strategies (their numbers identifies 

them at the bottom of the plots) lie almost exactly on the vertical axis and are characterized by 

low Sharpe ratios and CERs falling below the benchmark in correspondence to poor realized 

skewness and kurtosis, which is visible from the large radius of the circles. In the central panel 

of the picture, concerning the performance of the median prediction models, the results 

represented get worse: now no strategies fall in the golden region, with the near-exception of 

fund-of-funds strategies. Especially in this case, six HF strategies visibly fall behind the 

benchmarks in both performance dimensions and, particularly near the origin, the circles are 

large and hence connect the negative CERs to abysmal skewness and kurtosis properties. 

Especially in the case of median performances, there seems to be a direct relationship between 

Sharpe ratios and higher order moments, these all improve together moving from the origin 

towards the right. 

5.3  The effect of parameter uncertainty on the economic value of hedge funds 

Tables 12-16 and Figure 5 report key results with reference to the Bayesian portfolio analysis, 

i.e., when parameter uncertainty is taken into account. This seems to be of particular importance 

in the case of HF excess returns that tend to be predictable with a degree of uncertainty that is 

often higher than in the case of traditional asset classes. We present these results as an additional 

step vs. section 5.2 because this allows us to measure the incremental (if any) realized, OOS 

economic value generate by HF strategies when all forms of uncertainty are taken into account. 
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Table 12 deals with the benchmark case and immediately shows that in our application, dealing 

with parameter uncertainty yields first-order effects. When HF strategies are excluded from the 

asset menu, all (at least, top performing) VAR-driven models are mostly of the rolling window 

type and yield fairly balanced asset allocations across cash and risky assets, in some ways close 

to some 1/N solution when H = 1. For instance, the top performing VAR(1) model that includes 

as predictors the default spread, the short-term rate, and the dividend yield, implies that a 5-year 

horizon investor ought to hold on average 50% in REITs, 16% in corporate bonds, 14% in stocks, 

7% in long-term Treasuries, and the residual 13% in cash. The rolling window nature of the best 

performing models is sensible because Bayesian estimation makes a much more efficient use of 

smaller sample sizes (in this case, these are 120-observation samples rolled over time) because 

these are supplemented by the information in the priors. However, such a switch from expanding 

to rolling window estimation schemes is likely to be causing the substantial difference in portflio 

shares vs. Table 4. Because the 1-month horizon (average) portfolio shares are quite different 

(27%, 20%, 19%, 15%, and 19% listing the asset classes in the same order as above) from the 

long-horizon ones, a Bayesian investor would be characterized by larger hedging demands vs. 

Table 4.40 In particular, real estate is characterized by positive and large hedging demands, which 

shows that given the estimates of the corresponding VAR models, this asset class turns out to also 

provide self-insurance against the complex patterns of parameter uncertainty implied by the 

estimated posteriors of the coefficients. Yet, taming the portfolio effects of variation in the 

estimated coefficients tends to shift asset shares away from real estate and towards all other 

asset classes. Interestingly, all other asset classes are characterized by negative and non- 

negligible hedging demands and there is considerable homogeneity across predictability models 

in terms of their implications for portfolio weights. Moreover, the middle and lower panels of 

Table 12 show that compared to Table 4, the Bayesian optimal weights are more stable than those 

in Table 4, which is sensible in the light of the stabilizing effects of that taking into account 

                                                        
40 To save space, we omit the tabulation (or the plots of the posterior coefficient densites) of the posterior 
Bayesian estimates of any VAR models. Note that under the priors that we assumed, all posteriors will be 
centered around a mean that is identical to OLS estimates reported in Table 4. Yet, reporting measures 
concerning the posteriors of the estimated coefficients is well beyond the space available to us. 
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parameter uncertainty ends up to have. 

Table 13 (especially the upper panel, when transaction costs are applied ex-ante) should be 

compared to Table 5 and displays the realized OOS perfomances when the investor accesses only 

stocks, bonds, and REITs. Visibly, accounting for parameter uncertainty exercises a beneficial 

effects on realized performances. For instance, comparing the best (median) performing rolling 

window VAR(1) in the table with the best (median) expanding window model in Table 5, shows 

that the CER increases from 9.4 to 11.8 percent (3.15 to 8.36%), the Sharpe ratio increases from 

0.41 to 0.66 per year (0.36 to 0.52) as a result of the fact that mean returns remain stable at 12.1 

– 11.9% (12.5% - 11.8%) but realized volatilities decline from 20.9% to 12.9% (24.8% to 16%). 

Even though some strategies in Table 13 do yield lower realized kurtosis and (marginally) 

skewness, the cause for the large increase in realized CER is easily traced back to the high realized 

Sharpe ratios.41 All in all, Table 13 represents an even tougher benchmark for HF strategies to 

outperform: if, without HF, the traditional asset classes can be combined—exploiting 

predictability—to yield portfolio outcomes that are even better than in the case in which 

parameter uncertatinty is ignored, it will be now harder for HF strategies to find space in optimal 

portfolios and hence create economic value. 

Table 14, with reference to the excess returns of the HFRI weighted composite index, starts out 

by showing that in a Bayesian set up the demand for HF strategies as a whole is actually 

strengthened, now that the adverse effects (to a risk-averse portfolio optimizer) of their 

parameter uncertainty is taken into account. Moreover, the hedging demands characterizing FWC 

become now positive and substantial, reflecting the fact that it is especially long-horizon 

investors that may benefit from the availability of HF. For instance, the best performing strategy 

(a rolling window VAR(1) that includes the short rate, the dividend yield, SMB, momentum, and 

the returns on commodity lookback option strategies as predictors), implies that a long-horizon 

                                                        
41 Even though we have not performed the additional calculations to verify this conjecture, one may push 
the point to claim that while the results in sections 5.3 and 5.4 dependend on the assumption of power 
utility preferences and the fact all moments of the predictive density of wealth and consumption would 
matter to the investor, under Bayesian portfolio rule qualitatively similar result could have been recovered 
under simpler, stylized mean-variance preferences. 
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investor should invest 75% on average in hedge funds, 58% in REITs, 26% in corporate bonds, 

shorting cash (-37%) and stocks (-23%) to finance these long positions. Because a 1-month 

investor would hold a less extreme portfolio (e.g., 17% in FWC, 19% in REITs, 23% in corporate 

bonds, 20% in Treasuries, 7% in stocks, and 14% in cash), this implies large and positive hedging 

demands for hedge funds and real estate (which clearly can be used to also hedge parameter 

uncertainty), and large and negative hedging demands for stocks, Treasuries, and cash. More 

generally, the top ten strategies imply a FWC demand that ranges between 16% and 58% over 

short horizons and between 46% and 82% over long horizons, hence implying massively positive 

hedging demands in the interval 25-58%. This sizeable demands for HF composite strategies and 

corporate bonds causes the investor to express much lower portfolio shares in REITs and triggers 

significant borrowing at the short-term rate (also by shorting Treasuries but only at a 60-month 

horizon). Finally, the range of empirical variation and the recorded volatilities of the optimal 

portfolio weights are much larger in Table 14 vs. Table 12. In particular, the 90% empirical 

portfolio bounds are wide as a result of the presence of a number of outlier weights recorded 

over 2009-2010, when the 10-year rolling sample is heavily influenced by the financial crisis. 

For the HF styles FWC, FFP, and distressed/restructuring (DIS), Tables 15-16 (as well as a few 

tables in the on-line Appendix) perform afresh the computations in Tables 9-11 when parameter 

uncertainty is taken into account and HF are part of the asset menu. DIS is selected because 

among the individual HF strategies, it is one that leads to the best realized OOS performance. 

However, while Tables 9-11 concerned the expanding window VAR and Gaussian IID models, to 

be consistent with the main findings in Table 13, we now only focus on 10-year rolling window 

results, because these lead to superior performances.42 Consistently with their non-negligible 

optimal weights, HF strategies—both in the aggregate as measured by FWC or through the FFP 

categories, and also individually as shown in the Appendix for the DISstrategy and in the on-line 

Appendix for many other strategies—generate positive and large economic value under a wide 

variety of predictive frameworks, as shown by boldfacing the related estimates in the Tables; in 

                                                        
42 We have empirically checked that this property also holds in the case of asset menus that include HF 
strategies. Complete, tabulated results are available from the authors upon request. 
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all tables, the constant investment opportunity, Gaussian IID model has a hard time reaching the 

top of the ranking. For instance, in Table 15, FWC easily helps to generate higher CERs vs. the 

benchmark and in fact, in the case of the best performing rolling window VAR(1) model, the 90% 

confidence interval obtained by bootstrapping fails to overlap with the corresponding interval 

for the best performing performance in Table 13. This may be taken as evidence of a strong 

degree of backing of the generation of economic value from the adoption of hedge funds in the 

opportunity set faced by an investor. Interestingly, such a massive improvement in realized CER 

is entirely supported by higher (in fact, positive) realized skewness and lower realized kurtosis, 

i.e., by a higher-moment effect. This is evident from the fact that in Table 15 the realized Sharpe 

ratios are instead systematically lower than those reported in Table 13, although many strategies 

are able to direct FWC investments to enhance realized mean returns. Stated in a slightly different 

manner, while a simple mean-variance investor, even when parameter uncertainty is taken into 

account, would be unlikely to give much play to HFs as an alternative asset class, a power utility 

investor that also attaches importance to higher-order moments in assessing her expected utility 

will do so and on a rather large scale, as shown in Table 16. However, this conclusion stops short 

from characterizing the ranking of the performance of the median models, as the corresponding 

CER in Table 15 is vastly inferior to the corresponding statistic in Table 13: this means that a few 

of the predictive models occasionally produce very poor performances when hedge funds are 

included in the analysis so that an investor blindly selecting “some” model to perform asset 

allocation when HFs belong to the asset menu may be occasionally worse off. 

The evidence in the Appendix on the economic value of DISHF strategies is qualitatively identical 

to the one uncovered in Table 15 for the composite of all HF styles: rolling VAR-driven asset 

allocation dominates; it is easy to uncover large CERs that far exceed the benchmark (e.g., 15.8% 

under the best performing model); this finding is entirely driven by the stronger higher-order 

moment properties of HF excess returns as the realized Sharpe ratios (e.g., 0.36 for the best 

performing CER model) are below the benchmark. It remains the case that some blind choice of 

the median model to support asset allocation in the presence of DISstrategies would make the 

investor worse off. In Table 16, concerning FFP strategies, results are instead less clear-cut and, 
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therefore, more similar to those in Table 10: although the best rolling VAR model delivers a 

realized CER that outperforms that obtainable without HF, for most models (as well as for the 

median one), it is not easy to generate economic value. As mentioned in section 5.4, there is a 

small literature that has indeed questioned the net contribution that funds of HFs may give to 

applied portfolio management and this seems to apply also in normative terms, when transaction 

costs and parameter uncertainty are both taken into account. However, similarly to FWC and RVR, 

also in the case of FFP strategies, any evidence of net positive economic value entirely derives 

from the superior, realized higher-moment properties of strategies that include HFs, as shown by 

the fact that for top models ranked by CER, the realized Sharpe ratios are generally disappointing 

in comparative terms (between 0.31 and 0.37). Visibly, the issue is that FFP strategies imply an 

increase in skewness (often positive), a reduction in the realized portfolio kurtosis but also 

relatively high volatility. An on-line Appendix provides further evidence on the economic value 

of HFs with references to additional strategies: Table A5 concerns RVR and therefore is directly 

comparable to Table 12. Similarly to DIS, RVR leads to a marked improvement in realized CERs. 

However, differently from DIS, this case appears to be less clear-cut as the strong CERs are also 

supported by relatively high Sharpe ratios, i.e., the good realized performance seems to occur 

across the board of the properties of potential interest. Table A6 concerns instead merger and 

acquisition specialized HF strategies that also deliver relatively good economic value whose 

origin is however harder to interprete as the result seems to be supported both by relatively high 

Sharpe ratios and (we must infer) by realized portfolio return/wealth moments of order higher 

than skewness or kurtosis.43 

Figure 5 summarizes the results in this section by displaying best model-realized mean, 

skewness, kurtosis, Sharpe ratios, and especially CER for the benchmark in Table 14, FWC, FFP, 

and all other HF strategies obtained from the Bayesian portfolio OOS exercises, similarly to Figure 

2. As already commented, essentially with the only exception of COA (that marks a consistent 

                                                        
43 This claim exploits the fact that an investor maximizing power expected utility will take into account 
the entire predictive distribution of future wealth (portfolio returns) and such all of its moments and not 
only the first four. Complete tables concerning all HF strategies under Bayesian portfolio methods are 
available from the authors upon request. 
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reduction in Sharpe ratio), all strategies generate CERs that outperform the benchmark, even 

though their 90% confidence intervals always overlap to some extent and include the best CER 

for the traditional asset menu. Such incremental performance fails to originate from mean-

variance improvements revealed by the realized Sharpe ratios which are always approximately 

identical to the 0.41 ratio obtained from a traditional asset menu; to the contrary, the evidence 

of economic value stems from an increase in skewness (which turns in a few cases positive, like 

for FWC, PPF, and COA) and some lower realized kurtosis. All in all, also because power utility is 

more strongly affected by skewness than by kurtosis, it turns out that the improvements in 

realized skewness (along with some minor increases in Sharpe ratios stemming from higher 

realized means but curbed by higher realized volatilities, see Figure A1 in the on-line Appendix) 

more than compensate cases in which kurtosis climbs up and this delivers the CER gains shown 

in the top panel.44 These features of our empirical findings also emerge from the rightmost 

picture in Figure 4, which clearly shows that a few (4) HF strategies bring the optimal model 

performances within the north-western, golden region in which both the Sharpe ratio and the 

CER are no less than under the benchmark, with a few additional styles delivering either the same 

Sharpe ratio as the traditional assets but a higher CER, or the same CER but slightly higher Sharpe 

ratios. All in all, this is evidence hard to dismiss that—especially when parameter uncertainty is 

taken into account—HF strategies may significantly enrich classical stock-bond-real estate asset 

menus and generate economic value. 

5.5 The effect of transaction costs 

To save space and also because the presence of transaction costs represents the (only) realistic 

case, in this section we summarize a few remarks concerning the role played by transaction costs 

in our analysis but direct the interested Reader to the on-line Appendix for the tabulated results. 

For the case of  = 5, Table A11 reports on the same OOS portfolio benchmark results as Table 4 

when transaction costs are ignored. It is clear that the absence of transaction costs makes the 

                                                        
44 Using Taylor, polynomial expansions of expected power utility, it is easy to show that skewness will 
always dominate over kurtosis, see, e.g., Guidolin and Timmermann (2008). 
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positions in the different asset classes—even their simple averages over time—more extreme 

and at the same time more volatile, as one would expect. REITs and stocks remain dominant in 

the best performing predictive models, now joined by corporate bonds. Yet, an investor would 

have been advised, over time, to take massive short positions in cash and Treasury notes, to 

finance long positions in stocks and real estate. With reference to realized OOS performances, 

Table A12 reveals that in the absence of transaction costs, realized performances under a 

traditional asset menu are only slightly superior (e.g., the CER of the best performing model is 

9.99% vs. 9.41% and Sharpe ratio is 0.44 vs. 0.41 when transaction costs are accounted for). 

However, these results turn strongly in favor of accounting for transaction costs and benefitting 

from their stabilizing effects when one focusses on the performances of the median model. 

Finally, in Tables A13-A15, results turn decidedly in favor of the economic value of HF 

strategies—even the parameter uncertainty that characterizes them is ignored—when 

transaction costs go unaccounted for. For instance, at least eight predictive models may generate 

positive economic value in terms of additional, positive realized CER when the composite, value-

weighted HFRI index is considered. Such incremental value estimates are even larger in the case 

of FFP (see Table A14) and extend to a variety of HF styles, including RVR (see Table A15). 

6 Discussion and conclusions 

We report systematic, out-of-sample evidence of the potential economic benefits of diversifying 

into various HF strategies accruing to a long-term, risk-averse investor, who is already well-

diversified across stocks, REITs, and government and corporate debt. We have obtained the 

optimal weights and consumption rules using the dynamic programming, simulation-based 

methods in Barberis (2000) while adjusting the underlying VAR estimates for small-sample 

biases following Engsted and Pedersen (2012). In a range of recursive OOS experiments, we have 

estimated the CERs for a number of (simple but widely used) statistical models that can capture 

predictability in the risk premia of the asset classes under investigation to assess which HF 

strategies, if any, lead to an improved realized OOS utility relative to a baseline asset menu. To 

guard against the ill-effects of parameter uncertainty, we have also computed optimal Bayesian 
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portfolios and for added realism, our baseline exercises have been carried out imposing 

transaction costs on an ex-ante basis, as integral part of our backward solution algorithm. 

Especially with reference to intermediate and high risk aversion ( = 5, 10) and to aggregate 

indices of HF strategies (FWC) and fund-of-funds excess returns, we find that on average the 

optimal portfolios tend to be skewed towards public real estate and, to a lesser extent, stocks. 

When HF are part of the asset menu, their demand is modest but never zero, even though this 

grows considerably for more aggressive investors ( = 2) when parameter uncertainty is taken 

into account. Probably because we explicitly account for transaction costs (as well as the fact that 

trading HF strategies may be costly because they are hard to replicate and this occurs over-the-

counter, see the discussion in Hamza et al., 2006), leverage seldom appears and portfolio 

turnover tends to be moderate. The small-sample bias correction has a sizable effect on total and 

hedging demands as well as on the speed of mean-reversion implied by the estimated VAR 

models. Hedging demands for HFs tend to be positive due to their negative positive first-order 

serial correlation in returns. This effect is strengthened when hedging parameter uncertainty is 

allowed, in the case of Bayesian optimal portfolios. 

Our OOS experiments within the baseline asset space show that an investor who chooses to 

follow a simple buy-and-hold strategy achieves, on average, lower CERs than an investor who 

rebalances on a monthly basis. In the case of the extended menu, not all HF strategies have the 

potential to benefit long-term investors. Only strategies whose payoffs are highly nonlinear 

(relative value, merger arbitrage, and distressed restructuring), and therefore not easily 

replicable (by going long or short in the original asset classes) yield the highest utility gains. Our 

key results are robust across different values of the coefficient of relative risk aversion, although 

the largest benefits from diversifying into HFs accrue to medium and low risk-aversion investors, 

as one may expect when dealing with HF. Interestingly, the key findings on the value of HFs stem 

not from the ability of hedge strategies to increase realized mean returns, lower volatility, and 

therefore improve realized Sharpe ratios (as often debated by financial commentators), but from 

the ability of hedge strategies—when combined within well-diversified portfolios of stocks, 

bonds, and REITs—to improve the higher-order moments of optimal portfolios (i.e., higher 
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skewness and lower excess kurtosis). However, a portion of the findings that turn out to be 

encouraging for an assessment of HF performance critically hinges on the assumption that 

investors can accurately detect the best performing model for predictable risk premia. Our own 

assessment of the state-of-the-art in the empirical finance literature tends to be lukewarm at best 

with regard to such a discovery process occurring effectively (see the review in Rapach and Zhou, 

2013).45 When we assess the OOS performance of the median model of predictable returns (or 

lack thereof), we find that only specific HF strategies may still generate economic value, while 

composite value-weighted portfolio or strategies (as well as funds-of-funds) fail to do so. 

Our findings should encourage further analyses along several dimensions. First, distinguishing 

between bull and bear regimes may generate optimal portfolios which yield superior perfor-

mances relative to simple VARs (see, e.g., Guidolin and Hyde, 2012; Tu, 2010). For instance, 

Avramov et al. (2011) note that in times of crisis, some HF strategies (e.g., global macro) perform 

better than others (e.g., equity long/short). The widespread evidence of regimes in investment 

opportunities may affect our results. Second, the precision of our estimates, and therefore the 

quality of our forecasts, might be further improved if the exposures to the state variables were 

allowed to be time-varying in the spirit of Bollen and Whaley (2009). Finally, along the lines of 

recent work by Panopoulou and Vrontos (2015), given the long set of candidate predictors 

suggested by the literature, we could construct improved HF fund return predictions by carefully 

integrating the information content through combinations of forecasts. 
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Table 1 

Summary Statistics for Asset Returns and Predictor Variables of the Dataset 
The table presents summary statistics for monthly returns on stocks, bonds, publicly traded real 
estated, and HFR hedge fund strategy returns. The sample is January 1994 - December 2019. We 
use four predictors to model the time variation in investment opportunities, the dividend yield, 
the short-term riskless interest rate proxied by the 3-month Treasury constant maturity rate, the 
term spread calculated as the difference between the 10-year Treasury constant maturity rate 
and the corresponding 3-month rate, and the default spread computed as the yield differential 
between Moody’s seasoned Baa and Aaa corporate bond portfolio rates. In the case of hedge 
funds, we use HFRI style indices distributed by Hedge Fund Research (HFR). 

 

 

Mean Median Std.Dev.
Uncond.

Sharpe ratio Min, Max. Skewness Kurtosis JB Test
Panel A: Initial Asset Menu
30-day T-bill 0.223 0.210 0.183 0.000 0.000 0.560 0.041 1.393 27.20**
Excess stock return 0.532 1.320 4.496 0.118 -18.894 10.751 -0.932 4.728 67.83**
Excess long-term govt. bond returns 0.278 0.286 2.031 0.137 -6.752 8.508 0.062 4.116 13.23**
Excess long-term corporate bonds returns 0.385 0.554 2.621 0.147 -11.974 13.206 -0.270 7.422 208.39**
Excess real estate returns 0.827 1.215 5.721 0.145 -31.748 31.010 -0.757 11.157 722.76**
Default_spread (Baa-Aaa rate) 0.964 0.860 0.442 - 0.550 3.380 2.979 14.158 1680.11**
Riskless Term spread (10y-3m) 1.743 1.845 1.168 - -0.700 3.690 -0.191 1.901 14.21**
Short-term nominal rate (3m) 2.763 2.810 2.236 - 0.010 6.360 0.013 1.334 29.14**
Div_yield 2.005 2.013 0.458 - 1.002 3.161 -0.255 2.459 5.8
Panel B: Hedge Funds
HFRI Fund Weighted Hedge Fund excess return 0.460 0.608 1.966 0.234 -9.532 6.931 -0.823 6.314 143.77**
HFRI Fund Of Funds Composite excess return 0.209 0.397 1.655 0.126 -8.194 6.186 -0.945 7.526 252.61**
HFRI Equity Hedge excess return 0.561 0.686 2.574 0.218 -10.016 9.888 -0.413 5.263 60.93**
HFRI Event- Driven excess return 0.562 0.888 1.902 0.296 -9.751 4.634 -1.427 8.174 366.62**
HFRI Macro excess return 0.379 0.342 1.806 0.210 -6.824 6.158 0.072 4.223 15.93**
HFRI Relative Value excess return 0.433 0.574 1.203 0.360 -8.452 3.858 -3.015 21.163 3845.63**
HFRI EH Equity Market Neutral excess return 0.229 0.275 0.850 0.269 -3.020 3.210 -0.461 5.179 58.78**
HFRI ED Merger Arbitrage excess return 0.381 0.539 0.972 0.392 -6.288 2.718 -1.955 12.070 1024.40**
HFRI ED Distressed/Restructuring excess return 0.527 0.710 1.773 0.297 -8.930 5.550 -1.437 8.526 407.45**
HFRI RV Fixed Inc.- Conv.Arb. excess return 0.401 0.630 1.982 0.202 -16.090 9.740 -2.720 28.745 7270.36**
CBOE S&P 500 Buywrite Index 0.679 1.181 3.147 - -15.131 10.015 -1.244 7.327 261.52**
Ptfs Currency Lookback Straddle -0.848 -5.220 19.252 - -30.130 90.270 1.331 5.508 140.50**
Ptfs Commodity Lookback Straddle -0.237 -2.895 14.210 - -24.650 64.750 1.093 4.728 81.50**
Ptfs Bond Lookback Straddle -1.559 -3.900 15.258 - -26.630 68.860 1.361 5.477 142.21**
Ptfs Short Term Interest Rate Lookback Straddle -0.386 -5.615 26.022 - -34.640 221.920 4.274 30.425 8664.24**
SMB 0.120 -0.100 3.402 - -18.272 20.147 0.388 10.422 584.74**
HML 0.156 0.120 3.229 - -14.053 13.024 -0.228 6.311 117.32**
Momentum 0.300 0.553 5.460 - -42.434 16.873 -2.562 20.564 3514.80**
* Significance at 5%
** Significance at 1%
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Table 2 

Correlation Matrix 
The table presents estimated correlations and reported significance levels for monthly returns on stocks, bonds, publicly traded real estated, 
and HFR hedge fund strategy returns. The sample is January 1994 - December 2019. The estimated pairwise correlations also involve the 
four predictors described in Table 1. The acronyms used in the tables are listed at the bottom of three panels. 

 

 

Panel A: Initial Asset Menu

1-month bill Stocks Gov. Corp. REITS DY Def. Term. Short
Stocks - 1 -0.175** 0.242** 0.572** 0.155* -0.119 0.001 -0.023
Gov. - - 1 0.673** -0.024 -0.013 0.061 -0.002 -0.044
Corp. - - - 1 0.335** 0.012 0.101 0.07 -0.103
REITS - - - - 1 0.028 -0.092 0.051 -0.062
DY - - - - - 1 -0.101 0.254** -0.244**
Def. - - - - - - 1 0.327** -0.487**
Term. - - - - - - - 1 -0.769**
Short - - - - - - - - 1
* Significance at 5%
** Significance at 1%

Panel B: Initial Asset Menu vs. Hedge Funds

FWC FOF EQH EVD MAC REL EMN MEA DIS COA BMX PtfsFX PtfsCM PtfsBD PtfsIR SMB HML Mom.
Stocks 0.823** 0.667** 0.831** 0.780** 0.359** 0.612** 0.323** 0.608** 0.631** 0.503** 0.870** -0.198** -0.175** -0.253** -0.285** 0.248** -0.222** -0.267**
Gov. -0.194** -0.154** -0.207** -0.237** 0.152** -0.147** -0.075 -0.147** -0.246** -0.099 -0.174** 0.118* 0.081 0.233** 0.049 -0.195** 0.043 0.158**
Corp. 0.248** 0.244** 0.216** 0.248** 0.252** 0.358** 0.055 0.222** 0.221** 0.408** 0.254** -0.091 -0.04 0.049 -0.229** 0 0.028 -0.128*
REITS 0.445** 0.339** 0.450** 0.491** 0.128* 0.485** 0.160** 0.397** 0.454** 0.420** 0.555** -0.143* -0.152** -0.146* -0.176** 0.257** 0.275** -0.345**
DY 0.082 0.052 0.068 0.114* -0.004 0.083 0.056 0.098 0.111* 0.003 0.066 -0.079 -0.006 -0.069 -0.103 -0.044 -0.072 -0.025
Def. -0.093 -0.135* -0.124* -0.153** -0.006 -0.075 -0.234** -0.082 -0.160** 0.062 -0.131* 0.046 -0.035 0.028 0.121* 0.064 -0.096 -0.227**
Term. -0.023 -0.04 -0.082 -0.015 -0.035 -0.014 -0.147** -0.149** 0.103 -0.019 -0.074 -0.028 -0.018 -0.019 -0.099 0.118* -0.036 -0.07
Short 0.047 0.034 0.1 0.045 0.043 -0.002 0.173** 0.175** -0.046 -0.009 0.074 0.048 -0.017 0.034 0.133* -0.088 0.044 0.116*
* Significance at 5%
** Significance at 1%
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Table 2 (continued) 

Correlation Matrix 

 

Legend: DY = dividend yield; Def. = default spread; Term = riskless term spread; Short = 3-month nominal interest rate; FWC = returns on 
the HFRI Fund Weighted Composite Index; FFP = returns on the HFRI Fund of Funds Composite Index; EQH = returns on the HFRI Equity 
Hedge Index; EVD = returns on the HFRI Event Driven Index; MAC = returns on the HFRI Macro Index; RVR = returns on the HFRI Relative 
Value Index; EMN = returns on the HFRI Equity Market Neutral Index; MEA = returns on the HFRI Merger Arbitrage Index; DSE = returns on 
the HFRI Distressed/Restructuring Index; COA = returns on the HFRI RV Fixed Income Convertible Arbitrage; BMX = returns on the HFRI 
CBOE S&P 500 BuyWrite Index; PtfsFX = returns on a portfolio of lookback straddles on currency; PtfsCom = returns on a portfolio of 
lookback straddles on commodities; Ptfs BD = returns on a portfolio of lookback straddles on bonds; PtfsIR = returns on a portfolio of 
lookback straddles on interest rates; SMB = = returns on the Fama-French small-minus-big long-short portfolio, HML = returns on the Fama-
Frenc high-minus-low book-to-market portfolio; Mom. = = returns on a past stock winners-losers momentum strategy. 

Panel C: Hedge Funds

FWC FOF EQH EVD MAC REL EMN MEA DIS COA BMX PtfsFX PtfsCM PtfsBD PtfsIR SMB HML Mom.
FWC 1 0.925** 0.965** 0.916** 0.621** 0.759** 0.476** 0.703** 0.804** 0.634** 0.676** -0.133* -0.141* -0.261** -0.354** 0.463** -0.327** -0.110*
FOF - 1 0.867** 0.851** 0.696** 0.753** 0.501** 0.629** 0.801** 0.633** 0.529** -0.094 -0.085 -0.275** -0.404** 0.396** -0.261** 0.037
EQH - - 1 0.875** 0.537** 0.724** 0.505** 0.675** 0.750** 0.625** 0.694** -0.152** -0.153** -0.240** -0.354** 0.480** -0.327** -0.08
EVD - - - 1 0.494** 0.817** 0.468** 0.772** 0.885** 0.685** 0.684** -0.195** -0.215** -0.329** -0.386** 0.429** -0.145* -0.202**
MAC - - - - 1 0.301** 0.323** 0.332** 0.405** 0.233** 0.229** 0.196** 0.181** -0.033 -0.093 0.245** -0.207** 0.120*
REL - - - - - 1 0.436** 0.673** 0.829** 0.875** 0.590** -0.291** -0.253** -0.356** -0.448** 0.239** -0.038 -0.205**
EMN - - - - - - 1 0.415** 0.442** 0.347** 0.256** 0.007 -0.079 -0.235** -0.205** 0.144* 0.035 0.349**
MEA - - - - - - - 1 0.600** 0.534** 0.620** -0.107* -0.179** -0.226** -0.318** 0.290** -0.075 -0.143*
DIS - - - - - - - - 1 0.710** 0.548** -0.211** -0.222** -0.416** -0.382** 0.358** -0.039 -0.160**
COA - - - - - - - - - 1 0.486** -0.251** -0.233** -0.245** -0.413** 0.175** -0.01 -0.265**
BMX - - - - - - - - - - 1 -0.198** -0.176** -0.235** -0.306** 0.126* -0.085 -0.273**
PtfsFX - - - - - - - - - - - 1 0.353** 0.270** 0.256** -0.017 0.008 0.119*
PtfsCM - - - - - - - - - - - - 1 0.190** 0.228** -0.071 -0.032 0.189**
PtfsBD - - - - - - - - - - - - - 1 0.211** -0.077 -0.075 0.019
PtfsIR - - - - - - - - - - - - - - 1 -0.107* -0.005 0
SMB - - - - - - - - - - - - - - - 1 -0.360** 0.054
HML - - - - - - - - - - - - - - - - 1 -0.153**
Mom. - - - - - - - - - - - - - - - - - 1
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Table 3 

Full Sample (1994:01–2019:12) Estimates of Full VAR(1): Baseline Asset Menu 

The table presents full-sample OLS estimate of a VAR(1) model  
 𝒛𝒛𝑡𝑡+1 = 𝜱𝜱0 + 𝜱𝜱1𝒛𝒛𝑡𝑡 + 𝒗𝒗𝑡𝑡+1,  

where 𝒛𝒛𝑡𝑡+1 collects the short rate, benchmark excess returns, and the predictors, 𝜱𝜱0 is the 
(n+m) vector of intercepts, 𝜱𝜱1 is the (n+m)x(n+m) coefficient matrix, and 𝒗𝒗𝑡𝑡+1  𝒩𝒩(𝟎𝟎,∑𝒗𝒗∼   𝑖𝑖.𝑖𝑖.𝑑𝑑. ). 
We take into account the instability in parameters and adjust the estimates for small-sample 
bias as in Engsted and Pedersen (2012), by using the formula 𝜱𝜱�1 as 𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑇𝑇 = −𝒃𝒃

𝑇𝑇
+ 𝑂𝑂 �𝑇𝑇−

3
2�.  

 

Dependent 
variable Rft Stockst

Gov 
Treast

Corpt REITst Deft Termt
Short 
Ratet

DYt   R2

Rft+1 - adj. -0.068 0.000 -0.001 0.001 0.000 0.000 -0.005 0.083 -0.003
Not adjusted -0.082 0.000 -0.001 0.001 0.000 0.000 -0.005 0.084 -0.003 0.988
t-stat (-1.29) (-0.84) (-1.04) (0.67) (0.93) (0.04) (-3.49) (15.80) (-0.75)

Stockst+1 - adj. -3.122 0.087 -0.033 0.191 -0.026 -1.905 -0.558 -0.203 0.917
Not adjusted -2.379 0.085 -0.036 0.189 -0.025 -1.987 -0.664 -0.215 1.890 0.057
t-stat (-0.18) (0.87) (-0.11) (0.60) (-0.30) (-1.80) (-2.01) (-0.20) (2.77)

Gov Treast+1 - adj. -1.427 -0.079 -0.013 0.078 -0.063 -0.169 0.196 0.070 -0.210
Not adjusted -1.538 -0.080 -0.019 0.077 -0.062 -0.075 0.354 0.215 -0.262 0.096
t-stat (-0.35) (-2.20) (-0.20) (0.83) (-1.75) (-0.17) (2.07) (0.61) (-0.83)

Corpt+1 - adj. 0.740 0.035 0.021 0.139 -0.079 0.432 0.319 -0.070 -0.317
Not adjusted 0.653 0.037 0.030 0.121 -0.077 0.666 0.497 0.092 -0.151 0.064
t-stat (0.12) (0.80) (0.16) (0.63) (-1.26) (0.89) (2.21) (0.22) (-0.41)

REITst+1 - adj. -12.826 0.257 0.186 0.339 -0.096 -1.496 0.407 0.847 -0.979
Not adjusted -12.550 0.270 0.185 0.343 -0.111 -1.432 0.365 0.904 -0.181 0.094
t-stat (-0.93) (1.87) (0.33) (0.61) (-0.78) (-0.66) (0.87) (0.83) (-0.25)

Deft+1 - adj. 0.389 -0.001 0.035 -0.031 -0.002 0.975 0.002 -0.033 -0.002
Not adjusted 0.393 -0.001 0.035 -0.031 -0.002 0.961 0.001 -0.034 -0.004 0.959
t-stat (1.66) (-0.79) (3.98) (-3.30) (-0.77) (39.76) (0.10) (-1.92) (-0.29)

Termt+1 - adj. 2.227 0.000 -0.024 -0.025 0.006 0.064 0.965 -0.190 0.005
Not adjusted 2.186 0.000 -0.024 -0.025 0.006 0.063 0.945 -0.196 0.009 0.968
t-stat (3.97) (0.05) (-2.04) (-2.92) (1.58) (1.54) (52.78) (-4.51) (0.29)

Short Ratet+1 - adj. -2.128 0.001 -0.035 0.016 0.001 -0.058 0.021 1.179 0.036
Not adjusted -2.076 0.001 -0.034 0.016 0.001 -0.064 0.027 1.172 0.039 0.994
t-stat (-4.08) (0.32) (-3.59) (2.24) (0.54) (-2.38) (1.94) (29.82) (1.74)

DYt+1 - adj. 0.077 -0.002 -0.001 -0.004 0.000 0.017 0.003 -0.005 0.984
Not adjusted 0.061 -0.002 -0.001 -0.004 0.000 0.018 0.005 -0.005 0.962 0.962
t-stat (0.28) (-1.04) (-0.09) (-0.51) (0.07) (0.55) (0.80) (-0.28) (64.24)

Correlation of residuals (bias-adjusted coefficients)

Rf Stock Gov. 
Treas Corp. REITS Def. Term. Short 

Rate DY

Rf 1 -0.021 0.042 0.019 0.065 0.072 0.014 -0.017 0.013
Stock - 1 -0.161 0.261 0.585 -0.222 0.062 0.072 -0.922

Gov. Treas - - 1 0.686 0.016 0.079 -0.547 -0.169 0.091

Corp. - - - 1 0.353 -0.171 -0.432 0.034 -0.320

REITS - - - - 1 -0.233 -0.076 0.028 -0.670

Def. - - - - - 1 -0.062 -0.075 0.245

Term. - - - - - - 1 -0.560 -0.054

Short Rate - - - - - - - 1 -0.047

DY - - - - - - - - 1
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Table 4 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Baseline Asset Menu (γ = 5) 
The table shows sample means, standard deviations, and lower and upper bounds of the 90% sample range of recursive portfolio weights computed 
from the ten best performing among all VAR models for risk premia and all constant investment opportunities (IID) models. The table presents 
statistics for 1-month vs. long-term weights, and for their differences, the hedging demands. Transactions costs are accounted for. 

 

Default Term Short DY T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Exp. Gaussian IID __ __ __ __ __ 0.000 0.011 0.011 0.033 0.028 -0.006 0.000 0.011 0.011 0.017 0.019 0.003 0.950 0.931 -0.019
2 Rolling Gaussian IID __ __ __ __ __ 0.000 0.010 0.010 0.075 0.102 0.027 0.025 0.018 -0.007 0.000 0.010 0.010 0.900 0.860 -0.040
3 Rolling VAR 1 Y Y Y N 0.000 0.009 0.009 0.017 0.018 0.001 0.000 0.009 0.009 0.017 0.017 0.000 0.966 0.948 -0.018
4 Rolling VAR 1 Y N N N 0.000 0.010 0.010 0.017 0.010 -0.007 0.000 0.010 0.010 0.017 0.018 0.002 0.967 0.952 -0.015
5 Rolling VAR 1 Y Y Y Y 0.000 0.009 0.009 0.033 0.026 -0.007 0.000 0.009 0.009 0.017 0.017 0.001 0.950 0.939 -0.012
6 Rolling VAR 1 Y Y N Y -1.245 -1.645 -0.400 0.980 1.689 0.709 -0.111 -0.881 -0.770 -0.236 0.177 0.413 1.612 1.660 0.048
7 Rolling VAR 1 Y N Y N -1.559 -1.655 -0.096 0.778 1.389 0.611 -0.295 -1.488 -1.193 0.394 1.081 0.688 1.682 1.672 -0.010
8 Expanding VAR 1 Y N N Y 0.008 0.018 0.010 0.075 0.093 0.018 0.008 0.010 0.002 0.000 0.010 0.010 0.908 0.868 -0.040
9 Rolling VAR 1 Y N N N -1.492 -1.686 -0.194 0.435 1.012 0.577 -0.023 -1.213 -1.190 0.359 1.185 0.826 1.722 1.703 -0.019

10 Expanding VAR 2 Y N N Y -1.339 -1.643 -0.304 0.612 1.679 1.067 -0.059 -1.519 -1.460 0.158 0.827 0.669 1.629 1.657 0.027

1 Exp. Gaussian IID __ __ __ __ __ 0.000 0.045 0.031 0.180 0.135 0.050 0.000 0.045 0.000 0.129 0.101 0.005 0.219 0.234 0.087
2 Rolling Gaussian IID __ __ __ __ __ 0.000 0.044 0.012 0.264 0.290 0.112 0.156 0.100 0.041 0.001 0.044 0.019 0.301 0.337 0.003
3 Rolling VAR 1 Y Y Y N 0.000 0.039 0.039 0.129 0.099 0.142 0.000 0.039 0.039 0.129 0.098 0.100 0.180 0.200 0.179
4 Rolling VAR 1 Y N N N 0.000 0.044 0.044 0.129 0.044 0.110 0.000 0.044 0.044 0.129 0.100 0.102 0.180 0.196 0.174
5 Rolling VAR 1 Y Y Y Y 0.000 0.040 0.040 0.177 0.134 0.175 0.000 0.040 0.040 0.129 0.099 0.100 0.216 0.220 0.233
6 Rolling VAR 1 Y Y N Y 0.769 0.594 0.486 0.683 0.475 0.810 0.544 1.187 1.274 0.596 1.122 0.966 0.635 0.572 0.589
7 Rolling VAR 1 Y N Y N 0.496 0.526 0.526 0.846 0.845 0.821 0.655 0.763 1.006 0.602 0.443 0.518 0.559 0.489 0.594
8 Expanding VAR 1 Y N N Y 0.091 0.100 0.044 0.264 0.278 0.164 0.091 0.044 0.102 0.000 0.044 0.044 0.290 0.327 0.253
9 Rolling VAR 1 Y N N N 0.465 0.456 0.572 0.729 1.264 1.068 0.422 1.071 1.097 0.599 0.511 0.423 0.363 0.394 0.421

10 Expanding VAR 2 Y N N Y 0.639 0.661 0.580 0.643 0.543 0.647 0.454 0.819 0.823 0.403 0.587 0.741 0.577 0.626 0.347

1 Exp. Gaussian IID __ __ __ __ __ 0.000 0.164 0.164 0.000 0.200 0.200 0.000 0.164 0.164 0.000 0.195 0.164 0.505 0.800 0.002
2 Rolling Gaussian IID __ __ __ __ __ 0.000 0.100 0.100 1.000 1.000 0.000 0.000 0.200 0.100 0.000 0.100 0.100 1.000 1.000 0.000
3 Rolling VAR 1 Y Y Y N 0.000 0.058 0.058 0.000 0.150 0.000 0.000 0.058 0.058 0.000 0.117 0.057 0.000 0.660 0.000
4 Rolling VAR 1 Y N N N 0.000 0.100 0.100 0.000 0.101 0.000 0.000 0.100 0.100 0.000 0.200 0.100 0.000 0.800 0.001
5 Rolling VAR 1 Y Y Y Y 0.000 0.068 0.068 0.001 0.177 0.070 0.000 0.068 0.068 0.000 0.144 0.068 0.468 0.800 0.274
6 Rolling VAR 1 Y Y N Y 2.793 2.000 1.195 1.800 1.600 2.601 1.298 2.800 3.660 2.040 2.800 2.754 1.360 1.600 1.091
7 Rolling VAR 1 Y N Y N 1.029 2.000 1.002 2.067 2.373 3.399 1.800 2.000 2.805 1.784 1.596 1.069 0.044 1.600 1.446
8 Expanding VAR 1 Y N N Y 0.000 0.200 0.100 1.000 1.000 0.200 0.000 0.100 0.100 0.000 0.100 0.100 1.000 1.000 0.800
9 Rolling VAR 1 Y N N N 1.018 1.767 1.030 2.423 3.600 3.571 0.571 2.800 2.800 1.572 1.600 1.140 0.073 1.600 0.873

10 Expanding VAR 2 Y N N Y 1.225 2.000 1.046 1.588 1.200 1.681 0.642 2.399 2.298 1.000 1.800 2.314 0.259 1.600 0.199

CER 
rank Model Lags

Sample mean of portofolio weights

Sample Standard Deviation of Portofolio Weights

Empirical 90% Range

Predictors included Cash Stocks US Long-Term Treasuries US Corporate Bonds REITs
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Table 5 

Top 10 Models Ranked According to Realized CER for Buy-and-Hold and Monthly Rebalancing Strategies: Baseline Asset Menu (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months). Transactions costs are accounted for on an ex-ante basis. 

 

Default Term. Short DY Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB

Buy-and-hold
1 Expanding VAR 1 N N Y Y 60 12.068 12.039 12.096 30.203 29.243 31.183 0.300 0.105 0.496 0.478 -0.534 1.250 -0.585 6.671
2 Expanding VAR 1 Y N Y Y 60 11.848 11.671 11.727 29.631 28.668 30.678 0.299 0.106 0.492 0.475 -0.533 1.246 -0.616 6.904
3 Exp. Gaussian IID __ __ __ __ __ 60 12.340 12.265 12.323 30.221 29.247 31.236 0.309 0.116 0.502 0.472 -0.509 1.254 -0.608 6.748
4 Rolling Gaussian IID __ __ __ __ __ 60 12.555 12.121 12.178 29.665 28.690 30.658 0.322 0.128 0.516 0.446 -0.553 1.229 -0.603 6.827
5 Expanding VAR 1 Y Y Y Y 60 11.229 11.612 11.668 29.633 28.674 30.647 0.278 0.085 0.470 0.433 -0.565 1.183 -0.614 6.897
6 Expanding VAR 2 Y Y Y Y 60 12.369 12.410 12.468 30.656 29.716 31.694 0.306 0.110 0.501 0.425 -0.573 1.197 -0.595 6.650
7 Rolling VAR 2 N N Y Y 60 12.088 12.372 12.431 30.469 29.517 31.498 0.298 0.107 0.489 0.403 -0.581 1.197 -0.570 6.610
8 Rolling VAR 2 N N N Y 60 12.683 12.404 12.462 30.469 29.506 31.474 0.318 0.127 0.509 0.403 -0.551 1.201 -0.570 6.610
9 Rolling VAR 1 Y N Y N 60 11.738 12.149 12.207 30.629 29.654 31.627 0.285 0.097 0.474 0.380 -0.877 1.180 -0.609 6.639

10 Expanding VAR 2 N Y N Y 60 12.106 11.427 11.485 30.092 29.156 31.127 0.303 0.111 0.494 0.374 -0.615 1.145 -0.572 6.698

60 12.481 11.947 12.007 31.363 30.405 32.390 0.302 0.110 0.495 0.245 -1.196 1.165 -0.623 6.399
60 13.444 12.826 12.884 30.708 29.722 31.703 0.340 0.148 0.532 0.268 -1.024 1.172 -0.613 6.589

Montlhy rebalancing
1 Exp. Gaussian IID __ __ __ __ __ 60 12.132 12.113 12.632 20.908 20.438 21.379 0.413 0.302 0.523 9.413 8.271 10.295 -0.658 3.714
2 Rolling Gaussian IID __ __ __ __ __ 60 12.247 12.055 12.725 20.835 20.372 21.298 0.420 0.311 0.529 6.885 6.062 7.632 -0.549 3.620
3 Rolling VAR 1 Y Y Y N 60 12.039 11.744 12.268 24.760 23.842 25.678 0.345 0.227 0.462 6.564 5.283 7.489 -1.375 8.353
4 Rolling VAR 1 Y N N N 60 11.732 11.176 11.984 23.819 22.882 24.755 0.346 0.228 0.464 6.380 5.442 7.154 -1.706 9.198
5 Rolling VAR 1 Y Y Y Y 60 11.348 11.216 11.551 24.288 23.369 25.207 0.323 0.207 0.439 5.862 4.881 6.649 -1.531 8.640
6 Rolling VAR 1 Y Y N Y 60 13.070 12.921 14.139 20.177 19.702 20.652 0.474 0.363 0.586 5.725 5.068 6.380 -0.616 3.973
7 Rolling VAR 1 Y N Y N 60 11.888 11.386 12.317 23.847 22.920 24.774 0.352 0.235 0.469 5.716 5.058 6.378 -1.653 9.044
8 Expanding VAR 1 Y N N Y 60 11.522 11.248 12.267 20.180 19.704 20.655 0.398 0.287 0.508 5.636 4.936 6.285 -0.616 3.975
9 Rolling VAR 1 Y N N N 60 12.868 12.122 13.145 23.951 23.015 24.886 0.391 0.275 0.507 5.477 4.659 6.185 -1.648 8.960

10 Expanding VAR 2 Y N N Y 60 13.589 13.519 13.542 23.613 22.655 24.571 0.427 0.310 0.545 5.470 4.512 6.287 -1.701 9.414

60 12.495 11.964 12.879 24.747 23.817 25.678 0.363 0.250 0.476 3.146 2.468 3.765 -1.614 8.353
60 11.993 11.682 12.044 23.951 23.015 24.886 0.355 0.242 0.467 2.622 1.791 3.436 -1.641 7.769

CER 
rank Model Lags

Predictors included

Skewness KurtosisH

Annualized mean (%) Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)

Median Rolling VAR performance

Median Rolling VAR performance
Median Expanding VAR performance

Median Expanding VAR performance
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Table 6 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Asset Menu Including HFRI Fund 
Weighted Composite Index (FWC) (γ = 5) 

The table shows sample means, standard deviations, and lower and upper bounds of the 90% sample range of recursive portfolio weights computed 
from the ten best performing among all VAR models for risk premia and all constant investment opportunities (IID) models. The table presents 
statistics for 1-month vs. long-term weights, and for their differences, the hedging demands.  Transactions costs are accounted for. 

 

Term Short DY Default SMB PtfsBD PtfsIR COM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 N Y N Y N N N N 0.000 0.008 0.008 0.092 0.061 -0.030 0.096 0.045 -0.052 0.017 0.016 0.000 0.793 0.843 0.050 0.002 0.027 0.025
2 Expanding VAR 1 N Y N Y N Y N Y 0.000 0.008 0.007 0.098 0.075 -0.023 0.047 0.028 -0.019 0.017 0.016 -0.001 0.838 0.849 0.011 0.000 0.025 0.025
3 Expanding VAR 1 N Y N Y N Y Y Y 0.000 0.008 0.008 0.050 0.079 0.029 0.052 0.033 -0.019 0.017 0.008 -0.009 0.864 0.824 -0.040 0.016 0.047 0.031
4 Expanding VAR 1 N Y N Y N N Y N 0.000 0.007 0.007 0.063 0.076 0.012 0.087 0.090 0.003 0.017 0.015 -0.001 0.830 0.781 -0.049 0.003 0.031 0.028
5 Expanding VAR 1 N Y N Y N Y N N 0.000 0.008 0.008 0.080 0.051 -0.029 0.029 0.026 -0.002 0.017 0.008 -0.009 0.860 0.870 0.009 0.014 0.038 0.023
6 Expanding VAR 1 N Y N Y N Y Y N 0.000 0.008 0.008 0.098 0.055 -0.042 0.099 0.080 -0.018 0.017 0.016 -0.001 0.772 0.806 0.034 0.015 0.035 0.020
7 Expanding VAR 1 N Y N Y N N N Y 0.000 0.007 0.007 0.090 0.057 -0.034 0.073 0.035 -0.038 0.017 0.007 -0.009 0.810 0.849 0.039 0.010 0.046 0.035
8 Expanding VAR 1 N Y N Y N N Y Y 0.000 0.008 0.008 0.074 0.052 -0.022 0.046 0.103 0.057 0.008 0.016 0.008 0.857 0.804 -0.053 0.015 0.018 0.003

9 Expanding VAR 1 N Y N Y Y N N N 0.000 0.008 0.008 0.071 0.088 0.017 0.093 0.016 -0.077 0.017 0.016 -0.001 0.811 0.841 0.030 0.009 0.032 0.023
10 Expanding VAR 1 N Y N Y Y Y Y N 0.000 0.008 0.008 0.038 0.070 0.032 0.062 0.061 -0.001 0.017 0.008 -0.008 0.874 0.800 -0.074 0.008 0.052 0.044

1 Expanding VAR 1 N Y N Y N N N N 0.000 0.035 0.035 0.314 0.275 0.200 0.040 0.113 0.140 0.128 0.097 0.098 0.235 0.247 0.172 0.003 0.082 0.077
2 Expanding VAR 1 N Y N Y N Y N Y 0.000 0.033 0.033 0.335 0.248 0.193 0.006 0.134 0.057 0.129 0.097 0.098 0.235 0.241 0.164 0.009 0.073 0.078
3 Expanding VAR 1 N Y N Y N Y Y Y 0.000 0.034 0.034 0.293 0.229 0.191 0.050 0.126 0.078 0.129 0.034 0.134 0.219 0.231 0.172 0.002 0.195 0.203
4 Expanding VAR 1 N Y N Y N N Y N 0.000 0.032 0.032 0.332 0.255 0.182 0.070 0.048 0.140 0.129 0.096 0.097 0.235 0.237 0.156 0.008 0.083 0.070
5 Expanding VAR 1 N Y N Y N Y N N 0.000 0.032 0.032 0.306 0.240 0.186 0.085 0.086 0.068 0.128 0.032 0.133 0.219 0.226 0.164 0.008 0.202 0.206
6 Expanding VAR 1 N Y N Y N Y Y N 0.000 0.034 0.034 0.340 0.277 0.195 0.038 0.077 0.055 0.129 0.097 0.098 0.235 0.244 0.168 0.008 0.080 0.071
7 Expanding VAR 1 N Y N Y N N N Y 0.000 0.032 0.032 0.306 0.258 0.199 0.088 0.065 0.127 0.129 0.032 0.133 0.235 0.239 0.159 0.004 0.204 0.203
8 Expanding VAR 1 N Y N Y N N Y Y 0.000 0.035 0.035 0.292 0.248 0.246 0.036 0.057 0.151 0.091 0.097 0.035 0.201 0.247 0.171 0.008 0.072 0.091

9 Expanding VAR 1 N Y N Y Y N N N 0.000 0.035 0.035 0.329 0.247 0.192 0.009 0.119 0.093 0.129 0.097 0.098 0.235 0.245 0.170 0.009 0.070 0.078
10 Expanding VAR 1 N Y N Y Y Y Y N 0.000 0.035 0.035 0.237 0.239 0.236 0.023 0.128 0.116 0.128 0.035 0.134 0.201 0.233 0.196 0.001 0.202 0.213

1 Expanding VAR 1 N Y N Y N N N N 0.000 0.061 0.061 0.000 0.167 0.000 0.000 0.061 0.061 0.000 0.144 0.061 1.000 0.804 0.000 0.000 0.062 0.074
2 Expanding VAR 1 N Y N Y N Y N Y 0.000 0.045 0.045 0.000 0.167 0.000 0.000 0.045 0.045 0.000 0.120 0.045 1.000 0.796 0.001 0.000 0.044 0.020
3 Expanding VAR 1 N Y N Y N Y Y Y 0.000 0.075 0.075 0.000 0.167 0.000 0.000 0.075 0.075 0.000 0.074 0.074 0.500 0.883 0.001 0.000 0.123 0.097
4 Expanding VAR 1 N Y N Y N N Y N 0.000 0.045 0.045 0.000 0.167 0.000 0.000 0.045 0.045 0.000 0.106 0.045 0.998 0.868 0.001 0.000 0.044 0.050
5 Expanding VAR 1 N Y N Y N Y N N 0.000 0.063 0.063 0.000 0.167 0.000 0.000 0.062 0.062 0.000 0.062 0.062 0.500 0.830 0.001 0.000 0.096 0.073
6 Expanding VAR 1 N Y N Y N Y Y N 0.000 0.052 0.052 0.000 0.167 0.000 0.000 0.052 0.053 0.000 0.130 0.053 0.999 0.796 0.001 0.000 0.054 0.061
7 Expanding VAR 1 N Y N Y N N N Y 0.000 0.043 0.043 0.000 0.167 0.000 0.000 0.043 0.043 0.000 0.043 0.043 1.000 0.865 0.001 0.000 0.114 0.143
8 Expanding VAR 1 N Y N Y N N Y Y 0.000 0.066 0.066 0.000 0.167 0.000 0.000 0.066 0.066 0.000 0.149 0.066 0.000 0.829 0.001 0.000 0.067 0.055
9 Expanding VAR 1 N Y N Y Y N N N 0.000 0.053 0.053 0.000 0.167 0.000 0.000 0.053 0.053 0.000 0.136 0.053 1.000 0.844 0.000 0.000 0.054 0.025

10 Expanding VAR 1 N Y N Y Y Y Y N 0.000 0.101 0.101 0.000 0.167 0.049 0.000 0.101 0.101 0.000 0.101 0.101 0.000 0.860 0.206 0.000 0.135 0.126

Sample mean of portofolio weights

Sample Standard Deviation of Portofolio Weights

Empirical 90% Range

CER 
rank Model FWCPredictors includedLags Cash Stock US Long-Term Treasuries US Corporate REITs
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Table 7 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Asset Menu Including HFRI Fund 
of Funds Composite (FFP) (γ = 5) 

The table shows sample means, standard deviations, and lower and upper bounds of the 90% sample range of recursive portfolio weights computed 
from the ten best performing among all VAR models for risk premia and all constant investment opportunities (IID) models. The table presents 
statistics for 1-month vs. long-term weights, and for their differences, the hedging demands. Transactions costs are accounted for. 

 

Default Term Short DY SMB BMX Mom. COM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 Y N N N N N Y N 0.008 0.015 0.006 0.103 0.086 -0.017 0.017 0.030 0.013 0.017 0.015 -0.002 0.778 0.774 -0.004 0.077 0.081 0.004
2 Expanding VAR 1 Y N N N N Y Y N 0.008 0.015 0.006 0.057 0.053 -0.004 0.037 0.056 0.019 0.017 0.015 -0.002 0.785 0.742 -0.043 0.095 0.119 0.024
3 Expanding VAR 1 Y N Y N N Y Y N 0.000 0.007 0.007 0.088 0.053 -0.035 0.027 0.085 0.058 0.017 0.015 -0.002 0.766 0.750 -0.016 0.101 0.090 -0.012
4 Expanding VAR 1 Y N Y N N Y N N -1.407 -1.691 -0.284 0.358 0.852 0.495 -0.034 -0.576 -0.541 0.155 0.862 0.706 2.051 1.858 -0.193 -0.123 -0.306 -0.183
5 Expanding VAR 1 Y N N N N Y N N 0.000 0.007 0.007 0.109 0.051 -0.058 0.060 0.062 0.002 0.017 0.016 -0.001 0.742 0.787 0.045 0.072 0.077 0.005
6 Expanding VAR 1 Y N Y N N Y N Y 0.000 0.007 0.007 0.113 0.055 -0.058 0.042 0.018 -0.023 0.017 0.015 -0.001 0.753 0.809 0.055 0.075 0.095 0.020
7 Expanding VAR 1 Y N Y N N N Y N 0.000 0.006 0.006 0.079 0.072 -0.007 0.027 0.086 0.059 0.017 0.014 -0.002 0.806 0.731 -0.075 0.071 0.091 0.019
8 Expanding VAR 1 Y N Y N N N N N 0.000 0.007 0.007 0.074 0.080 0.007 0.031 0.047 0.015 0.017 0.015 -0.001 0.797 0.738 -0.058 0.082 0.112 0.030

9 Expanding VAR 1 Y N Y N Y Y Y N 0.000 0.008 0.008 0.085 0.082 -0.003 0.011 0.044 0.033 0.008 0.016 0.008 0.837 0.719 -0.117 0.060 0.131 0.071
10 Expanding VAR 1 Y N Y N Y Y N N -0.381 -0.643 -0.262 0.318 0.822 0.504 -0.076 -0.588 -0.512 0.174 0.846 0.672 1.080 0.304 -0.776 -0.115 0.259 0.374

1 Expanding VAR 1 Y N N N N N Y N 0.091 0.095 0.030 0.180 0.131 0.110 0.000 0.030 0.030 0.128 0.095 0.096 0.235 0.229 0.143 0.005 0.042 0.064
2 Expanding VAR 1 Y N N N N Y Y N 0.091 0.095 0.029 0.157 0.135 0.148 0.000 0.029 0.029 0.129 0.095 0.096 0.219 0.231 0.172 0.026 0.056 0.038
3 Expanding VAR 1 Y N Y N N Y Y N 0.000 0.031 0.031 0.180 0.135 0.115 0.000 0.031 0.031 0.129 0.096 0.097 0.219 0.220 0.155 0.015 0.049 0.035
4 Expanding VAR 1 Y N Y N N Y N N 0.528 0.438 0.598 0.631 0.671 0.820 0.399 0.608 0.719 0.471 1.196 1.173 0.091 0.314 0.339 0.378 1.710 1.733
5 Expanding VAR 1 Y N N N N Y N N 0.000 0.031 0.031 0.180 0.132 0.112 0.000 0.031 0.031 0.129 0.096 0.097 0.219 0.219 0.155 0.008 0.067 0.064
6 Expanding VAR 1 Y N Y N N Y N Y 0.000 0.030 0.030 0.180 0.133 0.112 0.000 0.030 0.030 0.129 0.096 0.097 0.219 0.217 0.150 0.018 0.034 0.063
7 Expanding VAR 1 Y N Y N N N Y N 0.000 0.028 0.028 0.180 0.131 0.110 0.000 0.028 0.028 0.129 0.095 0.096 0.219 0.208 0.136 0.039 0.038 0.035
8 Expanding VAR 1 Y N Y N N N N N 0.000 0.031 0.031 0.180 0.133 0.112 0.000 0.031 0.031 0.129 0.096 0.097 0.219 0.221 0.156 0.018 0.048 0.041

9 Expanding VAR 1 Y N Y N Y Y Y N 0.000 0.033 0.033 0.157 0.132 0.145 0.000 0.033 0.033 0.091 0.097 0.033 0.180 0.226 0.162 0.011 0.072 0.060
10 Expanding VAR 1 Y N Y N Y Y N N 0.607 0.614 0.591 0.641 0.787 0.857 0.338 0.644 0.687 0.477 1.207 1.160 0.358 0.471 0.393 0.437 1.731 1.780

1 Expanding VAR 1 Y N N N N N Y N 0.000 0.054 0.021 0.000 0.113 0.000 0.000 0.020 0.020 0.000 0.054 0.021 0.998 0.833 0.000 0.000 0.020 0.020
2 Expanding VAR 1 Y N N N N Y Y N 0.000 0.052 0.046 0.000 0.156 0.024 0.000 0.045 0.045 0.000 0.052 0.045 0.500 0.833 0.121 0.000 0.048 0.048
3 Expanding VAR 1 Y N Y N N Y Y N 0.000 0.034 0.035 0.000 0.164 0.000 0.000 0.034 0.034 0.000 0.064 0.034 0.500 0.816 0.000 0.000 0.033 0.033
4 Expanding VAR 1 Y N Y N N Y N N 0.999 1.722 1.074 1.784 1.633 3.133 0.563 1.778 1.379 0.918 2.600 2.600 0.087 0.457 0.548 0.800 3.600 3.600
5 Expanding VAR 1 Y N N N N Y N N 0.000 0.062 0.062 0.000 0.149 0.003 0.000 0.063 0.063 0.000 0.090 0.066 0.497 0.768 0.003 0.000 0.059 0.059
6 Expanding VAR 1 Y N Y N N Y N Y 0.000 0.052 0.052 0.000 0.155 0.000 0.000 0.050 0.051 0.000 0.076 0.052 0.500 0.745 0.000 0.000 0.053 0.053
7 Expanding VAR 1 Y N Y N N N Y N 0.000 0.040 0.040 0.000 0.128 0.003 0.000 0.038 0.038 0.000 0.044 0.041 0.497 0.679 0.003 0.000 0.043 0.043
8 Expanding VAR 1 Y N Y N N N N N 0.000 0.042 0.042 0.000 0.161 0.000 0.000 0.042 0.042 0.000 0.097 0.042 0.500 0.784 0.000 0.000 0.042 0.042
9 Expanding VAR 1 Y N Y N Y Y Y N 0.000 0.049 0.049 0.000 0.164 0.002 0.000 0.048 0.048 0.000 0.122 0.049 0.000 0.818 0.008 0.000 0.048 0.048

10 Expanding VAR 1 Y N Y N Y Y N N 1.175 1.949 1.032 1.642 1.633 3.391 0.476 1.911 1.296 0.915 2.600 2.600 0.102 1.445 0.762 0.486 3.600 3.600

Sample mean of portofolio weights

Sample Standard Deviation of Portofolio Weights

Empirical 90% Range

US Long-Term Treasuries US Corporate REITs FOFStockCER 
rank Model CashPredictors includedLags
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Table 8 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Asset Menu Including HFRI Relative 
Value (RVR) (γ = 5) 

The table shows sample means, standard deviations, and lower and upper bounds of the 90% sample range of recursive portfolio weights computed 
from the ten best performing among all VAR models for risk premia and all constant investment opportunities (IID) models. The table presents 
statistics for 1-month vs. long-term weights, and for their differences, the hedging demands. Transactions costs are accounted for. 

 

Default Term Short DY SMB PtfsBD PtfsIR COM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 Y N Y N Y N N Y 0.000 0.005 0.005 0.151 0.087 -0.064 0.114 0.070 -0.044 0.017 0.013 -0.004 0.596 0.679 0.082 0.122 0.147 0.024
2 Expanding VAR 1 Y N Y N Y Y N Y 0.000 0.005 0.005 0.115 0.113 -0.002 0.010 0.074 0.064 0.025 0.013 -0.012 0.785 0.684 -0.101 0.065 0.111 0.046
3 Expanding VAR 1 Y N Y N Y Y Y Y 0.000 0.005 0.005 0.169 0.118 -0.052 0.145 0.104 -0.041 0.025 0.014 -0.011 0.624 0.700 0.076 0.037 0.060 0.023
4 Expanding VAR 1 Y N Y N Y N Y Y 0.008 0.014 0.005 0.131 0.129 -0.001 0.036 0.064 0.028 0.025 0.014 -0.011 0.759 0.671 -0.088 0.041 0.108 0.067
5 Expanding VAR 1 Y N Y N Y N N N 0.000 0.004 0.004 0.117 0.152 0.035 0.029 0.106 0.076 0.017 0.004 -0.012 0.810 0.674 -0.135 0.027 0.059 0.032
6 Expanding VAR 1 Y N Y N N N N N 0.000 0.004 0.004 0.136 0.070 -0.066 0.058 0.138 0.080 0.017 0.004 -0.012 0.751 0.649 -0.102 0.038 0.134 0.096
7 Expanding VAR 1 Y N Y N N N N Y 0.000 0.004 0.004 0.126 0.088 -0.038 0.052 0.145 0.092 0.017 0.004 -0.012 0.715 0.661 -0.054 0.090 0.098 0.007
8 Expanding VAR 1 Y N Y N N N Y N 0.000 0.004 0.004 0.113 0.081 -0.032 0.028 0.081 0.052 0.017 0.004 -0.012 0.727 0.715 -0.013 0.115 0.114 0.000

9 Expanding VAR 1 Y N Y N N Y N N 0.000 0.004 0.004 0.158 0.074 -0.085 0.015 0.028 0.013 0.017 0.004 -0.012 0.773 0.771 -0.002 0.037 0.119 0.082
10 Expanding VAR 1 Y N Y N Y Y N N 0.000 0.005 0.004 0.099 0.073 -0.026 0.156 0.063 -0.093 0.017 0.004 -0.012 0.690 0.756 0.066 0.039 0.099 0.061

1 Expanding VAR 1 Y N Y N Y N N Y 0.000 0.027 0.027 0.374 0.313 0.204 0.138 0.154 0.081 0.129 0.095 0.095 0.762 0.732 0.418 0.225 0.211 0.092
2 Expanding VAR 1 Y N Y N Y Y N Y 0.000 0.027 0.027 0.337 0.326 0.231 0.142 0.211 0.122 0.156 0.095 0.131 0.809 0.722 0.623 0.281 0.262 0.072
3 Expanding VAR 1 Y N Y N Y Y Y Y 0.000 0.030 0.030 0.352 0.313 0.182 0.116 0.225 0.225 0.156 0.095 0.132 0.839 0.795 0.562 0.221 0.236 0.066
4 Expanding VAR 1 Y N Y N Y N Y Y 0.091 0.095 0.028 0.353 0.286 0.258 0.098 0.109 0.138 0.157 0.095 0.132 0.798 0.806 0.576 0.062 0.131 0.139
5 Expanding VAR 1 Y N Y N Y N N N 0.000 0.026 0.026 0.378 0.280 0.213 0.138 0.091 0.229 0.128 0.026 0.131 0.799 0.677 0.536 0.251 0.280 0.150
6 Expanding VAR 1 Y N Y N N N N N 0.000 0.026 0.026 0.364 0.289 0.226 0.043 0.163 0.134 0.128 0.026 0.131 0.767 0.726 0.510 0.282 0.248 0.099
7 Expanding VAR 1 Y N Y N N N N Y 0.000 0.026 0.026 0.362 0.267 0.238 0.073 0.224 0.094 0.128 0.026 0.132 0.788 0.756 0.468 0.262 0.209 0.116
8 Expanding VAR 1 Y N Y N N N Y N 0.000 0.026 0.026 0.377 0.283 0.242 0.085 0.130 0.113 0.129 0.026 0.132 0.764 0.757 0.504 0.265 0.253 0.108
9 Expanding VAR 1 Y N Y N N Y N N 0.000 0.026 0.026 0.319 0.291 0.259 0.020 0.119 0.094 0.129 0.026 0.132 0.757 0.735 0.574 0.266 0.239 0.077

10 Expanding VAR 1 Y N Y N Y Y N N 0.000 0.026 0.026 0.330 0.288 0.193 0.076 0.209 0.099 0.128 0.026 0.132 0.770 0.681 0.460 0.211 0.259 0.113

1 Expanding VAR 1 Y N Y N Y N N Y 0.000 0.000 0.000 0.000 0.115 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.823 -0.012 0.000 0.092 0.077
2 Expanding VAR 1 Y N Y N Y Y N Y 0.000 0.000 0.000 0.000 0.128 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.821 0.020 0.000 0.050 0.052
3 Expanding VAR 1 Y N Y N Y Y Y Y 0.000 0.000 0.000 0.000 0.164 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.883 -0.009 0.000 0.086 0.008
4 Expanding VAR 1 Y N Y N Y N Y Y 0.000 0.000 0.000 0.002 0.158 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.836 0.011 0.000 0.097 0.049
5 Expanding VAR 1 Y N Y N Y N N N 0.000 0.000 0.000 0.000 0.088 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.786 0.022 0.000 0.108 0.006
6 Expanding VAR 1 Y N Y N N N N N 0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.879 0.042 0.000 0.023 0.062
7 Expanding VAR 1 Y N Y N N N N Y 0.000 0.000 0.000 0.000 0.095 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.793 0.042 0.000 0.032 0.006
8 Expanding VAR 1 Y N Y N N N Y N 0.000 0.000 0.000 0.000 0.096 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.822 -0.014 0.000 0.051 0.074
9 Expanding VAR 1 Y N Y N N Y N N 0.000 0.000 0.000 0.000 0.103 0.000 0.000 0.000 0.001 0.000 0.000 0.001 1.000 0.837 0.006 0.000 0.084 0.081

10 Expanding VAR 1 Y N Y N Y Y N N 0.000 0.001 0.001 0.000 0.104 0.000 0.000 0.001 0.001 0.000 0.001 0.001 0.999 0.875 -0.005 0.000 0.026 0.073

Empirical 90% Range

CER 
rank Model Predictors includedLags Cash Stock US Long-Term Treasuries US Corporate REITs REL

Sample mean of portofolio weights

Sample Standard Deviation of Portofolio Weights
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Table 9 

Top 18 Models Ranked According to Realized CER: HFRI Fund Weighted Composite Index (FWC) (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the recursive 
portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order (where a VAR(0) 
is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either on an expanding 
or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 5-year horizon (H 
= 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have boldfaced all performance 
statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge fund strategies. 

 

 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 Y N Y N N N N N 60 12.660 12.522 12.797 20.705 20.244 21.204 0.442 0.364 0.521 9.314 8.131 10.226 -0.663 3.803
2 Expanding VAR 1 Y N Y N N Y N Y 60 11.969 11.832 12.105 20.688 20.224 21.182 0.409 0.331 0.487 9.274 8.129 10.147 -0.666 3.809
3 Expanding VAR 1 Y N Y N N Y Y Y 60 12.888 12.752 13.023 20.612 20.157 21.115 0.455 0.378 0.533 9.110 7.963 9.958 -0.676 3.837
4 Expanding VAR 1 Y N Y N N N Y N 60 11.965 11.827 12.103 20.610 20.158 21.117 0.411 0.332 0.489 9.081 7.951 9.950 -0.676 3.839
5 Expanding VAR 1 Y N Y N N Y N N 60 12.843 12.705 12.981 20.609 20.158 21.096 0.453 0.374 0.532 9.066 7.935 9.918 -0.675 3.839
6 Expanding VAR 1 Y N Y N N Y Y N 60 11.701 11.562 11.840 20.607 20.151 21.095 0.398 0.319 0.477 9.054 7.960 9.944 -0.674 3.838
7 Expanding VAR 1 Y N Y N N N N Y 60 12.551 12.410 12.692 21.162 20.696 21.651 0.428 0.347 0.508 9.025 7.701 9.925 -0.626 3.663
8 Expanding VAR 1 Y N Y N N N Y Y 60 12.533 12.396 12.669 20.764 20.308 21.264 0.435 0.357 0.513 8.973 7.795 9.858 -0.667 3.769
9 Expanding VAR 1 Y N Y N Y N N N 60 12.053 11.913 12.192 21.005 20.531 21.481 0.407 0.328 0.487 8.657 7.581 9.519 -0.594 3.696

10 Expanding VAR 1 Y N Y N Y Y Y N 60 11.634 11.498 11.771 20.552 20.110 21.045 0.396 0.318 0.474 8.408 7.411 9.175 -0.648 3.843
11 Expanding VAR 1 Y N Y N Y Y N N 60 11.639 11.502 11.775 20.564 20.101 21.054 0.396 0.318 0.474 8.401 7.443 9.192 -0.649 3.836
12 Expanding VAR 1 Y N Y N Y Y N Y 60 12.595 12.455 12.735 20.995 20.543 21.494 0.433 0.353 0.513 8.316 7.247 9.130 -0.617 3.686
13 Expanding VAR 1 Y N Y N Y N Y N 60 10.942 10.807 11.078 20.653 20.212 21.150 0.360 0.283 0.438 8.147 7.220 8.918 -0.648 3.793
14 Expanding VAR 1 Y N Y N Y N N Y 60 13.076 12.930 13.221 21.740 21.265 22.238 0.440 0.357 0.524 8.066 6.906 8.957 -0.573 3.660
15 Expanding VAR 1 Y N Y N Y Y Y Y 60 10.053 9.916 10.190 20.844 20.384 21.348 0.314 0.236 0.393 7.726 6.719 8.469 -0.656 3.731
16 Expanding VAR 1 Y N Y N Y N Y Y 60 10.978 10.835 11.121 21.141 20.694 21.645 0.354 0.272 0.435 7.634 6.606 8.402 -0.660 3.676
17 Exp. Gaussian IID __ Y N Y N __ __ __ __ 60 11.558 11.384 11.731 26.032 25.164 27.011 0.310 0.210 0.409 -4.974 -5.544 -4.396 -1.748 7.684
18 Expanding VAR 0 N N N Y N Y N N 60 10.824 10.428 11.220 60.161 58.951 61.342 0.122 -0.105 0.348 -10.102 -12.843 -7.492 -0.565 3.064

60 11.820 11.672 11.969 29.648 26.479 32.849 0.281 0.145 0.416 -10.102 -12.843 -7.492 -0.656 3.663Median Expanding VAR performance

KurtosisSkewnessHCER 
rank Model Lags

Annualized mean (%) Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)Predictors included
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Table 10 

Top 18 Models Ranked According to Realized CER: HFRI Fund of Funds Composite (FFP) (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the recursive 
portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order (where a VAR(0) 
is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either on an expanding 
or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 5-year horizon (H 
= 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have boldfaced all performance 
statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge fund strategies. 

 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 Y N Y N N N Y N 60 11.785 11.363 12.208 27.889 25.398 30.380 0.297 0.173 0.421 9.444 6.971 11.606 0.190 3.194
2 Expanding VAR 1 Y N Y N N Y Y N 60 11.979 11.396 12.561 27.848 25.327 30.370 0.304 0.179 0.430 9.110 6.531 11.435 -0.189 3.218
3 Expanding VAR 1 Y N Y N N Y Y N 60 11.020 10.783 11.257 10.333 9.298 11.368 0.728 0.600 0.855 8.958 7.820 9.848 -0.675 3.811
4 Expanding VAR 1 Y N Y N N Y N N 60 10.675 8.429 12.921 10.351 9.309 11.392 0.693 0.566 0.820 8.917 7.789 9.776 -0.671 3.796
5 Expanding VAR 1 Y N Y N N Y N N 60 10.365 9.571 11.158 27.918 25.429 30.407 0.246 0.125 0.367 8.914 6.391 11.115 -0.165 3.218
6 Expanding VAR 1 Y N Y N N Y N Y 60 11.923 11.850 11.995 10.685 9.636 11.734 0.788 0.659 0.917 8.806 7.502 9.723 -0.629 3.645
7 Expanding VAR 1 Y N Y N N N Y N 60 10.822 10.844 10.801 10.524 9.473 11.575 0.696 0.568 0.823 8.729 7.482 9.638 -0.658 3.687
8 Expanding VAR 1 Y N Y N N N N N 60 10.722 10.125 11.319 10.715 9.675 11.754 0.674 0.547 0.801 8.710 7.410 9.646 -0.632 3.644
9 Expanding VAR 1 Y N Y N Y Y Y N 60 9.502 6.111 12.893 10.385 9.348 11.422 0.578 0.450 0.706 8.475 7.399 9.318 -0.680 3.770

10 Expanding VAR 1 Y N Y N Y Y N N 60 10.351 7.438 13.263 10.498 9.453 11.543 0.653 0.525 0.780 8.459 7.315 9.314 -0.677 3.705
11 Expanding VAR 1 Y N Y N N N N N 60 11.774 11.341 12.208 27.908 25.410 30.405 0.296 0.175 0.418 8.383 6.060 10.416 -0.166 3.183
12 Expanding VAR 1 Y N Y N N Y Y Y 60 12.425 11.061 13.788 10.516 9.471 11.560 0.849 0.719 0.978 8.346 7.226 9.219 -0.686 3.704
13 Expanding VAR 1 Y N Y N Y N N N 60 9.952 8.470 11.433 11.019 9.929 12.109 0.586 0.459 0.712 8.306 6.918 9.303 -0.635 3.730
14 Expanding VAR 1 Y N Y N N N N Y 60 9.636 5.939 13.333 11.282 10.103 12.460 0.544 0.417 0.671 8.121 6.644 9.108 -0.628 3.916
15 Expanding VAR 1 Y N Y N Y Y N Y 60 12.088 12.070 12.105 10.930 9.840 12.019 0.786 0.659 0.912 8.084 6.798 8.962 -0.622 3.672
16 Expanding VAR 1 Y N Y N Y N Y N 60 12.811 10.805 14.816 10.613 9.566 11.659 0.877 0.751 1.004 8.048 6.895 8.926 -0.706 3.701
17 Expanding VAR 1 Y N Y N Y Y Y Y 60 10.163 8.799 11.527 10.597 9.533 11.661 0.629 0.501 0.756 7.973 6.845 8.824 -0.710 3.711
18 Exp. Gaussian IID _ _ _ _ _ _ _ _ _ 60 11.142 8.195 14.088 27.750 25.326 30.174 0.275 0.152 0.399 7.932 5.355 10.155 -0.222 3.112

60 11.157 10.113 12.201 21.559 19.289 23.829 0.355 0.240 0.471 7.925 6.119 9.035 -0.614 3.658

H
Annualized mean (%) Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)

Skewness Kurtosis

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table 11 

Top 18 Models Ranked According to Realized CER: HFRI Fixed Income Relative Value/Arbitrage (RVR) (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the recursive 
portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order (where a VAR(0) 
is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either on an expanding 
or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 5-year horizon (H 
= 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have boldfaced all performance 
statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge fund strategies. 

 

  

Default Term Short DY SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 Y N Y N Y N N Y 60 12.640 12.489 12.791 22.492 21.912 23.111 0.406 0.320 0.493 10.754 9.325 11.842 0.394 4.735
2 Expanding VAR 1 Y N Y N Y Y N Y 60 12.574 12.429 12.719 21.875 21.346 22.425 0.415 0.332 0.498 10.343 9.053 11.332 0.148 4.128
3 Expanding VAR 1 Y N Y N Y Y Y Y 60 11.432 11.295 11.569 20.637 20.193 21.143 0.384 0.306 0.463 8.921 7.987 9.704 -0.230 3.811
4 Expanding VAR 1 Y N Y N Y N Y Y 60 12.817 12.678 12.956 20.911 20.441 21.406 0.446 0.366 0.525 8.880 7.937 9.652 -0.142 3.747
5 Expanding VAR 1 Y N Y N Y N N N 60 12.502 12.329 12.676 25.802 24.988 26.655 0.349 0.250 0.448 7.939 6.222 9.083 0.556 6.451
6 Expanding VAR 1 Y N Y N N N N N 60 11.762 11.593 11.931 25.746 24.967 26.590 0.321 0.224 0.417 7.902 6.227 9.055 0.532 6.374
7 Expanding VAR 1 Y N Y N N N N Y 60 11.503 11.335 11.671 25.349 24.608 26.132 0.316 0.220 0.412 7.696 6.110 8.793 0.370 5.865
8 Expanding VAR 1 Y N Y N N N Y N 60 11.930 11.763 12.098 25.300 24.598 26.091 0.333 0.238 0.429 7.675 6.000 8.727 0.352 5.808
9 Expanding VAR 1 Y N Y N N Y N N 60 11.533 11.367 11.699 24.937 24.229 25.665 0.322 0.227 0.417 7.468 5.882 8.499 0.203 5.396

10 Expanding VAR 1 Y N Y N Y Y N N 60 12.496 12.330 12.661 24.929 24.230 25.658 0.361 0.266 0.456 7.462 5.892 8.501 0.202 5.391
11 Expanding VAR 1 Y N Y N N Y N Y 60 12.153 11.989 12.316 24.604 23.943 25.313 0.352 0.258 0.445 7.259 5.759 8.239 0.069 5.068
12 Expanding VAR 1 Y N Y N Y N Y N 60 12.217 12.051 12.382 24.474 23.831 25.179 0.356 0.262 0.451 7.168 5.699 8.143 0.020 4.961
13 Expanding VAR 1 Y N Y N N N Y Y 60 11.053 10.893 11.213 24.320 23.691 24.995 0.311 0.219 0.402 7.070 5.703 8.047 -0.042 4.839
14 Expanding VAR 1 Y N Y N N Y Y N 60 11.099 10.939 11.259 24.323 23.674 24.988 0.312 0.221 0.404 7.066 5.644 8.023 -0.040 4.843
15 Expanding VAR 1 Y N Y N N Y Y Y 60 12.964 12.805 13.123 23.768 23.199 24.402 0.398 0.307 0.489 6.625 5.308 7.515 -0.250 4.516
16 Expanding VAR 1 Y N Y N Y Y Y N 60 11.801 11.643 11.960 23.678 23.092 24.289 0.351 0.260 0.441 6.545 5.261 7.399 -0.279 4.480
17 Expanding AR 1 Y N N N N N N N 60 11.479 11.268 11.690 31.758 30.810 32.817 0.251 0.131 0.372 -0.423 -1.901 0.519 -0.214 6.238
18 Exp. Gaussian IID _ _ _ _ _ _ _ _ _ 60 10.489 10.080 10.898 61.000 59.870 62.134 0.115 -0.119 0.348 -1.700 -4.116 0.620 0.251 2.860

60 12.168 11.969 12.368 46.205 45.165 47.310 0.225 0.089 0.362 5.569 3.634 7.390 -0.166 3.970

Annualized mean (%)
Skewness Kurtosis

Annualized Sharpe ratio

Median Expanding VAR performanc

H
Annualized CER (%)CER 

rank Model Lags
Predictors included Annualized volatility (%)
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Table 12 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Bayesian Strategies Applied  
to the Baseline Asset Menu (γ = 5) 

The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. Weights are computed using 
the predictive density from a Bayesian estimate of the predictability model for excess asset returns, when the priors are non-informative 

 

Default Term Short DY T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Rolling VAR 1 Y N Y Y 0.191 0.124 -0.067 0.194 0.142 -0.052 0.150 0.072 -0.078 0.200 0.160 -0.041 0.265 0.502 0.238
2 Rolling VAR 1 Y Y N N 0.191 0.123 -0.069 0.196 0.133 -0.064 0.150 0.065 -0.085 0.198 0.134 -0.064 0.264 0.545 0.281
3 Rolling VAR 1 Y Y N Y 0.194 0.130 -0.065 0.200 0.157 -0.043 0.153 0.069 -0.084 0.198 0.135 -0.063 0.255 0.509 0.254
4 Rolling VAR 1 N Y Y N 0.193 0.127 -0.066 0.199 0.141 -0.058 0.153 0.063 -0.089 0.197 0.133 -0.065 0.257 0.536 0.278
5 Rolling VAR 1 N Y Y Y 0.193 0.126 -0.066 0.202 0.163 -0.038 0.152 0.065 -0.087 0.197 0.130 -0.066 0.257 0.515 0.258
6 Rolling VAR 1 Y N Y N 0.190 0.130 -0.061 0.197 0.141 -0.056 0.147 0.059 -0.088 0.194 0.132 -0.062 0.272 0.539 0.267
7 Rolling VAR 1 Y Y Y Y 0.188 0.123 -0.065 0.198 0.144 -0.054 0.143 0.053 -0.090 0.192 0.130 -0.062 0.278 0.550 0.271
8 Expanding VAR 1 Y N Y N 0.194 0.128 -0.066 0.199 0.143 -0.056 0.153 0.064 -0.089 0.197 0.133 -0.064 0.258 0.533 0.275
9 Rolling VAR 1 N N Y Y 0.191 0.129 -0.061 0.196 0.140 -0.056 0.147 0.058 -0.089 0.195 0.132 -0.063 0.271 0.540 0.269

10 Rolling VAR 1 Y N N N 0.193 0.127 -0.066 0.200 0.149 -0.051 0.152 0.062 -0.090 0.197 0.132 -0.065 0.258 0.530 0.272

1 Rolling VAR 1 Y N Y Y 0.010 0.027 0.028 0.013 0.055 0.055 0.012 0.073 0.068 0.015 0.095 0.090 0.040 0.164 0.124
2 Rolling VAR 1 Y Y N N 0.004 0.008 0.010 0.006 0.024 0.028 0.004 0.062 0.059 0.005 0.029 0.029 0.014 0.095 0.081
3 Rolling VAR 1 Y Y N Y 0.005 0.012 0.016 0.006 0.052 0.052 0.004 0.031 0.031 0.004 0.015 0.018 0.018 0.095 0.078
4 Rolling VAR 1 N Y Y N 0.004 0.013 0.016 0.005 0.030 0.032 0.004 0.029 0.029 0.003 0.016 0.018 0.015 0.080 0.066
5 Rolling VAR 1 N Y Y Y 0.004 0.013 0.016 0.006 0.060 0.060 0.004 0.036 0.035 0.004 0.015 0.017 0.013 0.100 0.087
6 Rolling VAR 1 Y N Y N 0.017 0.039 0.040 0.018 0.032 0.038 0.017 0.017 0.027 0.017 0.023 0.031 0.072 0.092 0.020
7 Rolling VAR 1 Y Y Y Y 0.016 0.015 0.027 0.028 0.066 0.059 0.016 0.016 0.028 0.017 0.044 0.047 0.071 0.115 0.044
8 Expanding VAR 1 Y N Y N 0.004 0.013 0.016 0.005 0.031 0.032 0.004 0.024 0.024 0.003 0.015 0.017 0.015 0.076 0.061
9 Rolling VAR 1 N N Y Y 0.017 0.041 0.040 0.017 0.036 0.042 0.016 0.016 0.027 0.016 0.025 0.032 0.070 0.092 0.021

10 Rolling VAR 1 Y N N N 0.004 0.013 0.016 0.005 0.040 0.041 0.004 0.027 0.027 0.003 0.018 0.019 0.014 0.085 0.072

1 Rolling VAR 1 Y N Y Y 0.014 0.036 0.049 0.026 0.151 0.152 0.015 0.057 0.089 0.029 0.292 0.279 0.053 0.493 0.440
2 Rolling VAR 1 Y Y N N 0.012 0.021 0.031 0.018 0.059 0.073 0.013 0.026 0.036 0.018 0.051 0.064 0.042 0.195 0.153
3 Rolling VAR 1 Y Y N Y 0.014 0.020 0.033 0.020 0.146 0.153 0.014 0.027 0.039 0.012 0.028 0.037 0.048 0.240 0.192
4 Rolling VAR 1 N Y Y N 0.010 0.020 0.029 0.014 0.072 0.083 0.009 0.033 0.043 0.009 0.031 0.039 0.038 0.192 0.154
5 Rolling VAR 1 N Y Y Y 0.010 0.024 0.033 0.017 0.170 0.175 0.010 0.032 0.039 0.010 0.030 0.037 0.036 0.268 0.232
6 Rolling VAR 1 Y N Y N 0.024 0.035 0.079 0.021 0.074 0.110 0.027 0.032 0.067 0.026 0.036 0.075 0.086 0.214 0.128
7 Rolling VAR 1 Y Y Y Y 0.038 0.046 0.088 0.023 0.116 0.138 0.038 0.047 0.088 0.037 0.050 0.096 0.098 0.307 0.209
8 Expanding VAR 1 Y N Y N 0.010 0.020 0.029 0.014 0.077 0.088 0.009 0.032 0.041 0.009 0.032 0.038 0.038 0.171 0.133
9 Rolling VAR 1 N N Y Y 0.019 0.037 0.072 0.032 0.070 0.114 0.020 0.033 0.062 0.018 0.041 0.075 0.079 0.237 0.157

10 Rolling VAR 1 Y N N N 0.010 0.021 0.029 0.016 0.124 0.131 0.009 0.026 0.033 0.009 0.036 0.041 0.037 0.228 0.191

CER 
rank Model Lags

Sample Mean of Portofolio Weights

Sample Standard Deviation of Portofolio Weights

Empirical 90% Range

Predictors included Cash Stocks US Long-Term Treasuries US Corporate Bonds REITs
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Table 13 

Top 10 Models Ranked According to Realized CER for Buy-and-Hold and Monthly Rebalancing Strategies: Bayesian Strategies Applied  
to the Baseline Asset Menu (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months) and using the predictive density from a Bayesian estimate of the predictability model for 
excess asset returns, when the priors are non-informative. 

 

Default Term Short DY Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB

Transaction costs
1 Rolling VAR 1 N N Y N 60 11.914 11.800 12.028 12.856 9.917 15.794 0.655 0.271 0.974 11.800 6.696 16.903 -1.359 5.567
2 Rolling VAR 1 N Y Y N 60 12.332 12.224 12.441 12.391 9.496 15.287 0.713 0.327 1.034 10.828 5.960 15.696 -1.423 5.815
3 Rolling VAR 1 N Y N N 60 11.746 11.639 11.854 12.075 9.207 14.943 0.683 0.296 1.005 10.796 5.966 15.626 -1.428 5.792
4 Rolling VAR 1 N N N Y 60 11.866 11.762 11.971 11.990 9.203 14.777 0.698 0.312 1.019 10.460 5.636 15.284 -1.400 5.793
5 Rolling VAR 1 N Y Y Y 60 12.352 12.249 12.455 11.850 9.216 14.483 0.747 0.362 1.068 10.448 5.584 15.312 -1.371 5.615
6 Rolling VAR 1 Y Y N Y 60 11.646 11.542 11.750 11.919 9.173 14.665 0.683 0.299 1.004 10.434 5.608 15.259 -1.395 5.782
7 Rolling VAR 1 Y N Y N 60 10.991 10.883 11.099 12.366 9.190 15.542 0.606 0.213 0.933 10.412 5.530 15.295 -1.540 7.146
8 Expanding VAR 1 N Y N Y 60 10.613 10.509 10.716 11.899 9.167 14.632 0.598 0.212 0.920 10.399 5.617 15.182 -1.394 5.752
9 Rolling VAR 1 Y N N Y 60 11.609 11.505 11.714 11.980 9.209 14.751 0.677 0.291 0.999 10.367 5.676 15.057 -1.402 5.808

10 Rolling VAR 1 N N Y Y 60 12.206 12.104 12.308 11.696 9.067 14.324 0.744 0.361 1.064 10.288 5.581 14.995 -1.381 5.690

60 11.462 11.318 11.607 17.119 13.409 20.829 0.465 0.089 0.779 8.765 1.090 16.441 -1.325 5.760
60 11.793 11.650 11.936 16.010 12.583 19.436 0.518 0.142 0.832 8.356 1.072 15.641 -1.256 6.029

No transaction costs
1 Rolling VAR 1 Y N Y Y 60 12.222 11.844 12.599 9.667 5.310 14.024 0.902 0.146 1.407 5.619 1.478 9.761 -1.274 8.095
2 Rolling VAR 1 Y Y N N 60 11.598 10.932 12.264 16.570 3.310 29.830 0.489 -0.352 1.049 2.626 -3.181 8.432 -1.239 4.852
3 Rolling VAR 1 Y Y N Y 60 11.287 10.490 12.085 18.849 2.873 34.824 0.413 -0.987 1.347 2.456 -2.330 7.242 -1.790 5.029
4 Rolling VAR 1 N Y Y N 60 11.814 10.834 12.794 23.456 3.692 43.221 0.354 -0.666 1.035 1.736 -2.252 5.724 -1.891 4.638
5 Rolling VAR 1 N Y Y Y 60 10.922 10.505 11.338 10.453 3.984 16.922 0.710 -0.035 1.206 1.374 -1.537 4.285 -0.591 6.833
6 Rolling VAR 1 Y N Y N 60 10.844 10.410 11.278 10.861 3.396 18.326 0.676 -0.061 1.168 1.078 -1.931 4.086 -0.894 4.355
7 Rolling VAR 1 Y Y Y Y 60 12.056 11.476 12.636 14.297 3.506 25.087 0.598 -0.152 1.098 0.891 -2.140 3.922 -0.870 5.154
8 Expanding VAR 1 Y N Y N 60 11.561 9.810 13.312 44.353 16.497 72.209 0.182 -0.668 0.748 0.495 -6.589 7.578 -0.628 4.018
9 Rolling VAR 1 N N Y Y 60 11.396 10.569 12.223 19.726 4.235 35.217 0.400 -0.640 1.094 0.074 -4.506 4.654 -1.367 4.949

10 Expanding VAR 1 Y N N N 60 10.390 9.591 11.188 19.343 3.340 35.346 0.356 -0.565 0.970 -0.301 -5.043 4.442 -1.618 5.213

60 11.257 9.989 12.525 34.245 6.384 62.106 0.227 -1.192 1.172 -6.110 -11.320 -0.901 -1.767 4.331
60 11.392 10.094 12.689 31.565 4.335 58.795 0.250 -0.769 0.930 -11.139 -16.877 -5.402 -1.488 4.476Median Rolling VAR performance

Annualized mean (%)

Median Rolling VAR performance
Median Expanding VAR performance

Median Expanding VAR performance

Skewness KurtosisCER 
rank Model Lags

Predictors included Annualized volatility (%) Sharpe ratio Annualized CER (%)
H
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Table 14 

Summary Statistics for Monthly Realized, Recursively Rebalanced Optimal Portfolio Weights: Bayesian Strategies Applied  
to  theAsset Menu Including HFRI Fund Weighted Composite Index (FWC) (γ = 5) 

The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

 

Default Term Short DY SMB BMX MOM COM T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Rolling VAR 1 N N Y Y Y N Y Y 0.149 -0.374 -0.523 0.071 -0.226 -0.297 0.198 0.009 -0.189 0.226 0.263 0.037 0.187 0.580 0.393 0.170 0.748 0.578
2 Rolling VAR 1 N N Y Y Y Y Y N 0.007 -0.188 -0.195 0.246 0.123 -0.124 0.002 -0.025 -0.027 0.168 0.220 0.052 0.388 0.393 0.005 0.189 0.478 0.289
3 Rolling VAR 1 N N Y Y N N Y Y -0.002 -0.254 -0.251 0.218 0.187 -0.030 0.045 -0.062 -0.107 0.206 0.246 0.040 0.377 0.375 -0.002 0.157 0.507 0.350
4 Rolling AR 1 N N N N N N N N 0.012 -0.225 -0.237 0.227 0.207 -0.020 0.008 -0.085 -0.093 0.180 0.209 0.029 0.389 0.394 0.005 0.183 0.500 0.318
5 Rolling VAR 1 N N Y Y N Y Y Y -0.452 -0.533 -0.081 -0.163 -0.028 0.135 0.035 0.035 0.000 0.204 0.254 0.050 0.798 0.449 -0.349 0.579 0.824 0.245
6 Rolling VAR 1 N N Y Y N N N Y 0.004 -0.224 -0.228 0.245 0.156 -0.089 -0.014 -0.043 -0.029 0.184 0.203 0.019 0.367 0.401 0.033 0.213 0.507 0.294
7 Rolling VAR 1 N N Y Y Y N N Y 0.044 -0.195 -0.239 0.203 0.205 0.002 0.054 -0.056 -0.110 0.179 0.179 0.000 0.354 0.379 0.025 0.166 0.488 0.322
8 Rolling VAR 1 N N N N N N N N 0.030 -0.209 -0.239 0.236 0.259 0.023 0.027 -0.087 -0.113 0.175 0.200 0.025 0.371 0.379 0.008 0.162 0.459 0.297
9 Rolling VAR 1 N N Y Y N Y N N 0.032 -0.215 -0.247 0.248 0.192 -0.056 0.012 -0.077 -0.089 0.171 0.233 0.062 0.377 0.376 0.000 0.161 0.492 0.331

10 Rolling VAR 1 N N Y Y Y Y N N 0.028 -0.186 -0.214 0.250 0.183 -0.066 0.015 -0.074 -0.089 0.165 0.193 0.028 0.360 0.390 0.030 0.183 0.494 0.311

1 Rolling VAR 1 N N Y Y Y N Y Y 0.291 0.255 -0.036 0.519 0.770 0.251 0.334 0.559 0.513 0.378 0.419 0.418 0.493 0.352 0.438 0.370 0.211 0.332
2 Rolling VAR 1 N N Y Y Y Y Y N 0.497 0.521 0.025 0.905 1.075 0.171 0.759 0.894 1.112 0.595 0.794 0.917 0.998 0.966 1.317 0.799 0.580 0.494
3 Rolling VAR 1 N N Y Y N N Y Y 0.494 0.530 0.036 0.887 1.086 0.199 0.718 0.874 1.091 0.566 0.782 0.891 1.003 0.994 1.318 0.803 0.596 0.496
4 Rolling AR 1 N N N N N N N N 0.504 0.508 0.004 0.937 1.050 0.113 0.783 0.875 1.084 0.608 0.771 0.916 1.017 0.990 1.292 0.814 0.594 0.487
5 Rolling VAR 1 N N Y Y N Y Y Y 0.453 0.453 0.006 1.063 1.063 0.086 0.817 0.817 0.000 0.737 0.737 0.385 0.827 0.827 0.777 0.661 0.496 0.038
6 Rolling VAR 1 N N Y Y N N N Y 0.495 0.503 0.008 0.909 1.062 0.153 0.762 0.855 1.101 0.576 0.773 0.910 1.006 0.952 1.310 0.805 0.571 0.501
7 Rolling VAR 1 N N Y Y Y N N Y 0.437 0.514 0.077 0.784 1.056 0.272 0.614 0.835 0.967 0.516 0.777 0.855 0.890 0.945 1.198 0.712 0.567 0.464
8 Rolling VAR 1 N N N N N N N N 0.396 0.503 0.107 0.726 1.044 0.318 0.576 0.812 0.937 0.469 0.770 0.823 0.813 0.948 1.143 0.650 0.569 0.444
9 Rolling VAR 1 N N Y Y N Y N N 0.414 0.499 0.085 0.752 1.042 0.290 0.598 0.810 0.941 0.498 0.763 0.825 0.846 0.953 1.161 0.677 0.572 0.467

10 Rolling VAR 1 N N Y Y Y Y N N 0.418 0.492 0.074 0.781 1.059 0.279 0.671 0.845 1.036 0.518 0.768 0.864 0.915 0.927 1.226 0.732 0.556 0.467

1 Rolling VAR 1 N N Y Y Y N Y Y 0.506 0.461 0.690 1.010 1.267 1.291 0.558 0.898 0.871 0.604 0.676 0.690 0.616 0.305 0.735 0.285 0.826 0.834
2 Rolling VAR 1 N N Y Y Y Y Y N 1.302 1.395 1.685 1.676 1.783 2.264 1.427 1.561 1.976 1.142 1.412 1.659 1.619 1.585 2.431 0.788 1.181 1.323
3 Rolling VAR 1 N N Y Y N N Y Y 1.268 1.363 1.724 1.647 1.765 2.304 1.340 1.520 1.955 1.064 1.376 1.558 1.622 1.597 2.532 0.845 1.186 1.307
4 Rolling AR 1 N N N N N N N N 1.327 1.306 1.695 1.723 1.765 2.240 1.454 1.550 1.977 1.172 1.399 1.658 1.627 1.612 2.475 0.873 1.168 1.299
5 Rolling VAR 1 N N Y Y N Y Y Y 1.134 1.134 0.431 1.776 1.776 0.750 1.427 1.427 0.000 1.350 1.350 0.693 1.357 1.357 0.518 1.109 1.109 0.094
6 Rolling VAR 1 N N Y Y N N N Y 1.297 1.307 1.783 1.695 1.763 2.280 1.441 1.494 1.928 1.091 1.389 1.624 1.702 1.566 2.478 0.824 1.164 1.323
7 Rolling VAR 1 N N Y Y Y N N Y 1.095 1.352 1.658 1.508 1.730 2.077 1.156 1.454 1.711 0.968 1.362 1.520 1.495 1.545 2.100 0.710 1.179 1.277
8 Rolling VAR 1 N N N N N N N N 0.981 1.321 1.561 1.339 1.715 2.040 1.070 1.423 1.679 0.849 1.355 1.470 1.337 1.537 1.883 0.591 1.150 1.214
9 Rolling VAR 1 N N Y Y N Y N N 1.007 1.321 1.538 1.418 1.735 2.031 1.141 1.428 1.627 0.916 1.366 1.457 1.369 1.519 1.975 0.674 1.178 1.239

10 Rolling VAR 1 N N Y Y Y Y N N 1.031 1.261 1.596 1.498 1.767 2.135 1.284 1.498 1.818 0.955 1.416 1.564 1.496 1.510 2.157 0.702 1.155 1.245

FWCCER 
rank Model Lags

Empirical 90% Range

Sample Standard Deviation of Portfolio Weights

Sample Mean of Portfolio Weights

Predictors included Cash Stocks US Long-Term Treasuries US Corporate Bonds REITs



73 

Table 15 

Top 18 Models Ranked According to Realized CER: Bayesian Strategies Applied to the Asset Menu Including  
HFRI Fund Weighted Composite Index (FWC) (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the recursive 
portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order (where a VAR(0) 
is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either on an expanding 
or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 5-year horizon (H 
= 60 months) and using the predictive density from a Bayesian estimate of the predictability model for excess asset returns, when the priors 
are non-informative. Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have boldfaced all 
performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge fund strategies. 

 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Rolling VAR 1 N Y Y N N Y Y Y 60 13.508 13.327 13.689 29.062 24.185 33.939 0.344 0.166 0.523 14.878 11.752 18.004 0.581 4.256
2 Rolling VAR 1 N Y Y N Y Y N Y 60 12.785 12.608 12.962 28.586 25.109 32.063 0.325 0.158 0.492 13.605 11.450 15.760 0.657 3.129
3 Rolling VAR 1 N Y Y N N Y Y Y 60 13.134 12.973 13.295 26.021 23.232 28.811 0.370 0.220 0.521 13.500 10.872 16.127 0.324 3.691
4 Rolling VAR 1 N N N Y N N N Y 60 12.344 12.172 12.517 27.748 24.420 31.076 0.319 0.162 0.476 12.091 8.235 15.947 0.701 3.115
5 Rolling VAR 1 N Y Y N Y Y Y N 60 13.595 13.412 13.778 29.705 26.452 32.958 0.340 0.193 0.487 11.159 6.375 15.942 0.943 3.771
6 Rolling VAR 1 N Y Y N Y N Y N 60 12.227 12.063 12.392 27.169 23.777 30.561 0.321 0.160 0.483 10.092 7.508 12.675 0.635 3.254
7 Rolling VAR 1 N Y Y N N N Y Y 60 13.699 13.547 13.852 24.714 21.576 27.853 0.413 0.256 0.570 8.770 6.332 11.207 0.719 5.326
8 Roll. Gaussian IID 0 N N N N N N N N 60 12.286 12.106 12.465 29.297 25.441 33.153 0.300 0.151 0.449 8.767 4.670 12.864 0.821 3.550
9 Rolling VAR 1 N Y Y N Y N N N 60 11.519 11.356 11.681 26.266 23.676 28.857 0.305 0.160 0.450 8.748 4.334 13.161 0.911 2.470

10 Rolling VAR 1 N Y Y N Y N N N 60 11.344 11.171 11.516 27.785 23.989 31.582 0.282 0.133 0.432 6.925 5.188 8.662 0.836 3.749
11 Rolling VAR 1 N Y Y N Y N Y N 60 13.489 13.324 13.653 26.336 22.228 30.443 0.379 0.223 0.536 6.680 3.409 9.950 0.532 4.419
12 Rolling VAR 1 N Y Y Y N Y N Y 60 12.770 12.592 12.947 28.604 24.945 32.263 0.324 0.162 0.486 6.535 0.634 12.435 0.657 3.437
13 Rolling VAR 1 N Y Y Y N Y N Y 60 11.495 11.362 11.628 21.724 18.632 24.815 0.368 0.227 0.509 6.053 3.902 8.204 0.643 3.902
14 Rolling VAR 1 N Y Y Y N N N N 60 11.465 11.308 11.621 25.318 22.892 27.743 0.315 0.177 0.452 4.702 2.038 7.366 0.999 2.388
15 Rolling VAR 1 N Y Y Y N N N N 60 12.062 11.884 12.240 28.446 24.701 32.191 0.301 0.157 0.445 4.243 0.616 7.870 0.858 3.526
16 Rolling VAR 1 N Y Y Y N N Y Y 60 10.747 10.572 10.922 28.642 25.212 32.072 0.253 0.109 0.397 3.963 1.820 6.106 0.844 3.077
17 Rolling VAR 1 N Y Y Y Y Y Y Y 60 11.346 11.164 11.527 29.256 25.112 33.399 0.268 0.120 0.416 3.695 -0.397 7.788 0.784 3.836
18 Rolling VAR 1 N Y Y Y Y Y N Y 60 10.564 10.402 10.725 26.224 22.417 30.031 0.269 0.126 0.413 2.459 -1.133 6.051 0.821 4.084

60 12.892 12.548 13.237 19.204 8.828 29.581 0.489 -0.379 1.057 5.345 -4.321 13.506 0.617 3.976

H
Annualized mean (%)

Median Rolling VAR performance

CER 
rank Model Lags

Predictors included Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness Kurtosis
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Table 16 

Top 18 Models Ranked According to Realized CER: Bayesian Strategies Applied to the Asset Menu Including  
HFRI Fund of Funds Composite (FFP) (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the recursive 
portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order (where a VAR(0) 
is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either on an expanding 
or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 5-year horizon (H 
= 60 months) and using the predictive density from a Bayesian estimate of the predictability model for excess asset returns, when the priors 
are non-informative. Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have boldfaced all 
performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge fund strategies. 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Rolling  VAR 1 N Y Y N N Y Y Y 60 12.597 12.419 12.775 26.823 22.795 30.850 0.339 0.169 0.509 12.016 7.221 16.810 0.119 4.317
2 Rolling AR 1 N N N Y N N N N 60 12.936 12.746 13.125 28.088 24.311 31.865 0.336 0.177 0.494 10.191 6.161 14.220 -0.186 3.617
3 Rolling  VAR 1 N Y Y Y Y Y Y Y 60 12.625 12.452 12.798 26.227 22.845 29.610 0.348 0.189 0.506 9.082 5.290 12.875 0.111 3.426
4 Rolling  VAR 1 N Y Y Y Y N N Y 60 13.871 13.670 14.073 30.016 26.416 33.616 0.346 0.194 0.497 8.365 6.027 10.702 0.068 3.056
5 Rolling  VAR 1 Y Y Y Y Y Y N Y 60 12.136 11.950 12.322 27.841 25.137 30.545 0.310 0.161 0.459 7.628 4.559 10.698 0.336 2.403
6 Rolling  VAR 1 N Y Y Y Y Y N N 60 11.840 11.659 12.021 26.702 22.861 30.543 0.312 0.163 0.462 7.459 5.121 9.797 0.249 3.865
7 Rolling  VAR 1 N Y Y Y Y N N N 60 12.650 12.456 12.844 29.371 24.669 34.072 0.312 0.149 0.474 7.316 1.978 12.654 -0.297 4.625
8 Rolling  VAR 1 N Y Y N N N Y Y 60 11.849 11.671 12.028 26.633 22.699 30.566 0.314 0.151 0.476 6.193 2.574 9.811 -0.327 4.299
9 Rolling  VAR 1 N Y Y N N N Y N 60 12.082 11.908 12.256 26.566 23.200 29.931 0.323 0.180 0.466 5.709 2.898 8.519 0.639 3.349

10 Roll. Gaussian IID 0 N N N N N N N N 60 13.088 12.917 13.259 25.952 22.722 29.182 0.369 0.217 0.522 5.701 2.681 8.721 0.096 4.311
11 Rolling  VAR 1 N Y Y Y Y Y Y N 60 13.251 13.053 13.450 30.067 25.806 34.329 0.324 0.170 0.479 5.655 1.515 9.796 0.058 3.889
12 Rolling  VAR 1 N Y Y N N N N Y 60 12.881 12.728 13.034 23.091 20.015 26.166 0.406 0.250 0.562 4.960 1.852 8.067 -0.266 5.833
13 Rolling  VAR 1 N Y Y Y Y N Y Y 60 12.666 12.490 12.842 26.388 22.202 30.574 0.347 0.192 0.502 3.964 0.203 7.724 -0.180 4.607
14 Rolling  VAR 1 N Y Y N N Y N N 60 13.099 12.904 13.294 28.889 25.230 32.547 0.332 0.183 0.482 3.926 0.182 7.670 0.046 3.345
15 Rolling  VAR 1 N Y Y N N Y N Y 60 13.678 13.497 13.860 27.015 23.381 30.649 0.377 0.232 0.522 3.325 1.480 5.170 0.186 3.616
16 Rolling  VAR 1 N N Y Y Y N Y Y 60 10.851 10.355 11.348 9.338 5.728 16.948 0.894 -1.665 3.454 3.026 -10.388 16.441 -0.657 9.173
17 Rolling  VAR 1 Y Y Y N N Y Y N 60 12.781 12.561 13.002 32.708 29.014 36.401 0.284 0.140 0.427 2.653 -0.192 5.498 0.395 2.833
18 Rolling  VAR 1 N Y Y N N N N N 60 13.864 13.674 14.053 28.977 25.627 32.327 0.358 0.209 0.506 2.385 -2.208 6.979 -0.031 3.939

60 12.436 12.077 12.794 19.263 10.459 28.067 0.464 -0.480 1.408 2.258 -5.665 10.181 -0.183 3.001

H
Annualized mean (%)

Median Rolling VAR performance

CER 
rank Model Lags

Predictors included Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness Kurtosis
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Figure 1 

Possible Realized Performance Indicators under Alternative Model Assumptions 
The plots represent the annualized Sharpe ratio (on the horizontal axis), the annualized percentage CER (vertical axis), and the Jarque-Bera 
statistic for non-normalities (a composite of realized skewness and kurtosis, the size of the circles) derived from three alternative theoretical 
models. The latter model in fact represents the case in which the empirical properties of the data prevent from establishing any specific links 
between the realized Sharpe ratio, skewness, and kurtosis of the optimal portfolio weights.  
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Figure 2 

Comparisons of Realized Performance Indicators for the Top Models 
The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% range (as 
a bin) of OOS performance measures obtained with references to a recursive portfolio exercises for the 
sample 2004:01 – 2014:12. Each measure refers to either a benchmark asset menu that excludes HF 
strategies or to extended menus that include either a composite value-weighted index of all HF strategies 
or to one strategy at the time. In the case of skewness and kurtosis, we report 90% confidence intervals 
based on a delta-method approximation of their standard error. 
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Figure 3 
Comparisons of Realized Performance Indicators for the Median Expanding VAR Models 

The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% range (as 
a bin) of OOS performance measures obtained with references to a recursive, portfolio exercises for the 
sample 2004:01 – 2014:12. Each measure refers to either a benchmark asset menu that excludes HF 
strategies or to extended menus that include either a composite value-weighted index of all HF strategies 
or to one strategy at the time. In the case of skewness and kurtosis, we report 90% confidence intervals 
based on a delta-method approximation of their standard error. 
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Figure 4 

Empirically Realized Performance Indicators 
The plots represent the annualized Sharpe ratio (on the horizontal axis), the annualized percentage CER (vertical axis), and the Jarque-Bera 
statistic for non-normalities (a composite of realized skewness and kurtosis, the size of the circles) derived from OOS performance measures 
obtained with references to recursive, portfolio exercises for the sample 2004:01 – 2019:12. The calculations are performed assuming the 
investor assesses realized performance with a 5-year horizon. Monthly rebalancing applies. In the plot, larger circles indicate increasing non-
normalities and the red circle refers to the benchmark allocation excluding hedge fund strategies. The legends to the different portfolio/hedge 
fund strategies are the bottom of the plots. 

 
Legend: 1 = Benchmark, 5-year optimal portfolio with monthly rebalancing; 2= FWC, HFRI Fund Weighted Composite Index; 3 = FFP, HFRI Fund of 
Funds Composite Index; 4 = RVR, HFRI Relative Value Index; 5 = MAC, HFRI Macro Index; 6 = EQH, HFRI Equity Hedge Index; 7 = EVD, HFRI Event 
Driven Index; 8= MEA, HFRI Merger Arbitrage Index; 9 = DSE = HFRI Distressed/Restructuring Index; 10 = EMN, HFRI Equity Market Neutral Index; 
11= COA, HFRI RV Fixed Income Convertible Arbitrage.
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Figure 5 

Comparisons of Realized Performance Indicators for the Median Expanding VAR Models – 
Bayesian Optima Portfolio Strategies 

The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% range (as 
a bin) of OOS performance measures obtained with references to a recursive, portfolio exercises for the 
sample 2004:01 – 2014:12. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months) and using the predictive density from a Bayesian 
estimate of the predictability model for excess asset returns, when the priors are non-informative. 
Monthly rebalancing applies and it is taken into account by a long-horizon investor. 

 

 

 



Table A1 

Top 10 Models Ranked According to Realized CER for Buy-and-Hold and Monthly Rebalancing Strategies: Baseline Asset Menu (γ = 2) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months).  

Def. Term Short DY Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Buy-and-hold

1 Rolling VAR 1 N N N Y 60 14.292 14.219 14.364 30.254 27.871 32.638 0.357 0.301 0.412 1.718 -1.735 5.170 -0.616 9.173
2 Rolling VAR 1 N Y N Y 60 13.802 13.731 13.873 32.869 30.483 35.256 0.313 0.258 0.369 1.717 -1.757 5.192 -0.873 9.374
3 Rolling VAR 1 N N Y Y 60 13.516 13.448 13.585 30.981 28.604 33.359 0.323 0.268 0.379 1.710 -1.618 5.038 -0.806 9.934
4 Exp. Gaussian IID 0 N N N N 60 14.076 14.005 14.147 32.045 29.650 34.440 0.330 0.274 0.386 1.708 -1.859 5.275 -0.872 9.685
5 Rolling Gaussian IID 0 N N N N 60 13.862 13.789 13.935 30.999 28.625 33.372 0.334 0.278 0.390 1.708 -1.817 5.233 -0.815 9.146
6 Rolling VAR 2 N Y N N 60 12.573 12.501 12.644 30.422 28.059 32.785 0.298 0.242 0.355 1.708 -1.842 5.258 -0.918 9.660
7 Expanding VAR 1 N N Y Y 60 13.317 13.244 13.389 32.098 29.729 34.468 0.306 0.251 0.361 1.708 -1.845 5.260 -0.802 9.120
8 Expanding VAR 1 N Y N Y 60 12.349 12.276 12.422 31.215 28.803 33.627 0.283 0.228 0.339 1.708 -1.793 5.209 -0.848 8.910
9 Expanding VAR 1 N N N Y 60 14.319 14.247 14.391 33.793 31.405 36.182 0.320 0.265 0.376 1.708 -1.790 5.205 -0.913 10.035

10 Expanding VAR 1 N Y Y Y 60 12.544 12.471 12.617 33.354 30.935 35.773 0.271 0.216 0.326 1.708 -1.757 5.172 -0.908 9.747

60 13.766 13.643 13.889 58.022 53.567 62.478 0.177 0.121 0.233 -4.667 -12.571 3.237 -1.085 9.235
60 13.442 13.314 13.569 57.240 52.724 61.756 0.174 0.119 0.229 -4.646 -12.662 3.369 -1.014 9.430

Montlhy rebalancing
1 Expanding VAR 1 Y N Y N 60 13.827 13.768 13.887 26.233 24.208 28.258 0.394 0.340 0.448 12.304 8.256 16.352 0.395 3.913
2 Rolling VAR 1 Y N Y Y 60 13.505 13.448 13.562 24.988 23.051 26.924 0.400 0.348 0.453 11.300 7.694 14.907 0.440 4.984
3 Rolling VAR 1 Y N N Y 60 14.631 14.577 14.685 22.416 20.486 24.347 0.497 0.444 0.549 11.073 7.779 14.367 0.990 7.534
4 Rolling VAR 1 Y Y N Y 60 14.725 14.672 14.777 21.562 17.363 50.487 0.521 0.467 0.574 10.879 7.576 14.183 0.605 6.303
5 Expanding VAR 2 Y N N Y 60 13.693 13.631 13.754 25.190 22.738 27.641 0.405 0.347 0.462 10.335 6.283 14.386 -0.265 8.277
6 Expanding VAR 2 Y N Y Y 60 14.812 14.752 14.873 25.728 23.267 28.190 0.440 0.382 0.498 9.929 5.945 13.912 -0.168 8.768
7 Rolling VAR 1 Y Y N N 60 12.957 12.895 13.019 27.796 25.311 30.281 0.340 0.284 0.397 9.678 5.755 13.602 -0.104 8.298
8 Expanding VAR 2 Y Y N N 60 12.558 12.495 12.620 27.727 25.199 30.256 0.327 0.270 0.383 9.548 5.619 13.477 0.064 9.036
9 Rolling VAR 1 Y N N N 60 13.203 13.140 13.266 27.175 24.711 29.639 0.357 0.300 0.414 9.536 5.940 13.133 -0.018 9.002

10 Expanding VAR 2 Y N Y N 60 13.579 13.518 13.640 27.513 24.990 30.037 0.366 0.310 0.423 9.412 5.558 13.265 -0.025 8.945

60 14.014 13.932 14.095 48.676 45.523 51.828 0.216 0.161 0.271 -5.339 -8.197 -2.482 -0.492 6.176
60 13.720 13.642 13.797 42.866 40.075 45.657 0.238 0.183 0.294 -5.932 -9.716 -2.147 -0.926 6.185

Annualized CER (%)
Skewness KurtosisCER 

rank Model Lags
Predictors included

H
Annualized mean (%)

Median Rolling VAR performance

Median Rolling VAR performance

Annualized volatility (%) Annualized Sharpe ratio

Median Expanding VAR performance

Median Expanding VAR performance

6 
6 

6 

1



Table A2 

Top 10 Models Ranked According to Realized CER for Buy-and-Hold and Monthly Rebalancing Strategies: Baseline Asset Menu (γ = 10) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months).  

Def. Term Short DY Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Buy-and-hold

1 Rolling VAR 1 Y N Y N 60 10.257 10.188 10.326 33.243 32.209 34.384 0.203 0.068 0.338 3.626 -2.443 9.695 -0.608 7.355
2 Rolling VAR 1 Y Y Y Y 60 10.253 10.188 10.319 32.252 31.204 33.358 0.209 0.075 0.343 3.362 -3.009 9.732 -0.622 7.611
3 Rolling VAR 1 N Y Y Y 60 10.255 10.188 10.321 32.207 31.134 33.278 0.210 0.075 0.344 3.271 -3.185 9.727 -0.612 7.567
4 Rolling VAR 2 Y Y Y Y 60 10.249 10.184 10.314 31.328 30.293 32.399 0.215 0.082 0.348 3.245 -2.643 9.133 -0.615 7.876
5 Rolling VAR 1 Y N Y Y 60 10.255 10.187 10.322 32.470 31.406 33.610 0.208 0.074 0.342 3.227 -3.464 9.917 -0.620 7.580
6 Rolling VAR 1 N N Y Y 60 10.258 10.190 10.325 33.040 32.008 34.183 0.205 0.070 0.339 3.196 -3.500 9.893 -0.589 7.332
7 Rolling VAR 2 Y N N Y 60 10.256 10.188 10.324 33.072 32.009 34.164 0.204 0.070 0.339 3.174 -3.443 9.791 -0.611 7.422
8 Rolling VAR 2 N Y Y Y 60 10.251 10.185 10.317 31.749 30.738 32.863 0.213 0.079 0.346 3.162 -3.106 9.430 -0.611 7.716
9 Expanding VAR 2 Y Y Y Y 60 10.257 10.188 10.326 33.658 32.589 34.762 0.201 0.067 0.335 3.097 -3.528 9.721 -0.596 7.314

10 Rolling VAR 2 Y N Y Y 60 10.254 10.186 10.321 32.574 31.511 33.677 0.207 0.074 0.340 3.092 -3.329 9.512 -0.602 7.571

60 10.260 10.188 10.331 34.443 33.371 35.550 0.196 0.061 0.331 1.363 -9.265 11.990 -0.624 7.040
60 10.258 10.188 10.327 33.673 32.621 34.795 0.201 0.066 0.335 2.346 -6.740 11.433 -0.617 7.247

Montlhy rebalancing
1 Expanding VAR 1 Y N Y N 60 10.257 10.211 10.304 22.611 22.155 23.113 0.299 -0.008 0.606 15.528 8.472 22.583 0.542 3.082
2 Rolling VAR 1 Y N Y N 60 10.253 10.203 10.304 24.228 23.460 25.083 0.279 -0.041 0.599 12.869 9.153 16.584 -0.014 6.273
3 Rolling VAR 1 Y N Y Y 60 10.255 10.207 10.302 22.727 22.231 23.237 0.297 -0.004 0.598 12.378 8.008 16.747 0.558 4.328
4 Expanding VAR 1 Y N N N 60 10.249 10.197 10.301 25.495 24.623 26.473 0.265 -0.055 0.584 12.228 6.182 18.275 -0.203 4.258
5 Rolling VAR 1 Y Y N Y 60 10.255 10.209 10.301 22.154 21.649 22.698 0.305 -0.002 0.612 11.197 7.623 14.770 0.508 4.622
6 Rolling VAR 1 Y N N Y 60 10.258 10.212 10.303 22.084 21.562 22.620 0.306 0.005 0.607 10.904 7.132 14.676 0.503 4.646
7 Rolling VAR 1 Y Y Y N 60 10.256 10.204 10.308 24.861 24.003 25.794 0.272 -0.049 0.592 10.715 4.860 16.569 -0.161 4.167
8 Rolling VAR 1 Y N N N 60 10.251 10.197 10.305 25.947 25.001 27.010 0.260 -0.060 0.581 10.332 5.353 15.310 -0.323 5.196
9 Expanding VAR 1 Y Y N N 60 10.257 10.203 10.311 26.128 25.158 27.186 0.259 -0.055 0.572 10.227 5.972 14.481 -0.306 5.116

10 Expanding VAR 2 Y N N Y 60 10.254 10.200 10.307 25.881 24.924 26.995 0.261 -0.055 0.577 9.763 4.222 15.303 -0.367 5.616

60 10.260 10.204 10.315 26.514 25.582 27.562 0.255 -0.055 0.564 7.663 2.907 12.419 -0.302 7.656
60 10.258 10.199 10.317 27.544 26.581 28.613 0.245 -0.052 0.543 3.093 -2.077 8.263 -0.305 7.158

Median Rolling VAR performance

Median Rolling VAR performance

Annualized volatility (%)

Median Expanding VAR performance

Median Expanding VAR performance

H
Annualized mean (%) Annualized CER (%)

Skewness Kurtosis
Sharpe ratioCER 

rank Model Lags
Predictors included

2



Table A3 

Top 18 Models Ranked According to Realized CER: HFRI Equity Market Neutral (EMN) (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Def. SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N Y N Y N N Y N 60 12.791 12.747 12.834 19.308 18.506 20.110 0.481 0.425 0.538 10.971 10.951 10.991 -0.386 3.402
2 Expanding VAR 1 N Y N Y Y N Y N 60 12.409 12.365 12.452 19.301 18.494 20.108 0.462 0.404 0.519 10.943 10.924 10.963 -0.385 3.405
3 Expanding VAR 1 N Y N Y N Y Y N 60 12.637 12.593 12.681 19.263 18.444 20.081 0.474 0.417 0.532 10.911 10.891 10.930 -0.391 3.415
4 Expanding VAR 1 N Y N Y Y Y Y N 60 12.192 12.148 12.236 19.264 18.455 20.074 0.451 0.395 0.507 10.835 10.816 10.855 -0.388 3.417
5 Expanding VAR 1 N Y N Y N Y Y Y 60 12.524 12.480 12.568 19.345 18.549 20.140 0.466 0.410 0.523 10.683 10.664 10.702 -0.396 3.396
6 Expanding VAR 1 N Y N Y N N Y Y 60 11.673 11.629 11.717 19.500 18.679 20.321 0.419 0.362 0.476 10.338 10.319 10.357 -0.417 3.387
7 Expanding VAR 1 N Y N Y N N N N 60 11.720 11.674 11.766 20.589 19.436 21.742 0.399 0.341 0.457 9.159 9.140 9.179 -0.879 5.015
8 Expanding VAR 1 N Y N Y Y N N N 60 13.050 13.004 13.097 20.577 19.412 21.743 0.464 0.406 0.522 9.067 9.047 9.087 -0.877 5.020
9 Expanding VAR 1 N Y N Y N Y N N 60 12.014 11.967 12.061 20.526 19.378 21.674 0.415 0.357 0.473 8.954 8.934 8.973 -0.885 5.048

10 Expanding VAR 1 N Y N Y Y Y N N 60 11.174 11.128 11.221 20.526 19.382 21.670 0.374 0.315 0.433 8.937 8.917 8.956 -0.884 5.048
11 Expanding VAR 1 N Y N Y N Y N Y 60 13.044 12.998 13.091 20.596 19.459 21.734 0.463 0.405 0.521 8.768 8.748 8.787 -0.884 4.999
12 Expanding VAR 1 N Y N Y N N N Y 60 12.401 12.354 12.449 20.776 19.625 21.927 0.428 0.371 0.486 8.378 8.359 8.397 -0.890 4.910
13 Expanding VAR 1 N Y N Y Y Y Y Y 60 10.482 10.432 10.532 21.742 20.498 22.986 0.321 0.263 0.379 6.743 6.724 6.762 -1.087 5.204
14 Expanding VAR 1 N Y N Y Y Y N Y 60 12.004 11.954 12.054 21.833 20.564 23.102 0.389 0.331 0.448 6.558 6.539 6.578 -1.320 5.283
15 Expanding VAR 1 N Y N Y Y N N Y 60 10.182 10.132 10.232 21.941 20.668 23.214 0.305 0.246 0.363 6.404 6.384 6.423 -1.145 5.391
16 Expanding VAR 1 N Y N Y Y N Y Y 60 10.567 10.516 10.617 22.114 20.788 23.439 0.320 0.262 0.377 6.149 6.129 6.169 -1.198 5.582
17 Expanding VAR 1 N N N Y N N N Y 60 12.085 11.958 12.213 56.658 53.937 59.379 0.152 0.097 0.206 5.103 5.054 5.151 -0.149 4.036
18 Expanding VAR 1 N N N Y N N Y N 60 10.278 10.153 10.402 55.205 52.653 57.757 0.123 0.067 0.179 3.963 3.922 4.003 -0.328 3.825

60 12.664 12.620 12.708 43.318 40.852 45.784 0.212 0.156 0.267 3.880 3.837 3.922 -0.408 4.013

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included

3 



Table A4 

Top 18 Models Ranked According to Realized CER: HFRI Event-Driven (EVD) (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table A3 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N Y N Y N Y N Y 60 12.425 12.378 12.471 20.534 19.398 21.671 0.435 0.377 0.492 6.286 3.597 8.975 -0.788 5.380
2 Expanding VAR 1 N Y N Y N N N Y 60 11.871 11.823 11.918 20.718 19.583 21.852 0.404 0.346 0.462 6.210 3.471 8.950 -0.764 5.282
3 Expanding VAR 1 N Y N Y N Y N N 60 12.195 12.147 12.242 20.540 19.406 21.675 0.423 0.366 0.481 5.891 3.192 8.591 -0.777 5.354
4 Expanding VAR 1 N Y N Y N N N N 60 11.946 11.898 11.994 20.819 19.685 21.954 0.406 0.349 0.463 5.873 3.118 8.629 -0.776 5.223
5 Expanding VAR 1 N Y N Y Y N N N 60 11.220 11.171 11.268 21.408 20.229 22.586 0.361 0.304 0.417 5.861 3.048 8.674 -0.575 5.260
6 Expanding VAR 1 N Y N Y Y N N Y 60 13.002 12.954 13.051 21.437 20.264 22.610 0.443 0.387 0.499 5.697 2.940 8.453 -0.597 5.236
7 Expanding VAR 1 N Y N Y Y Y N N 60 12.656 12.609 12.704 20.969 19.847 22.091 0.437 0.380 0.493 5.679 2.983 8.375 -0.776 5.179
8 Expanding VAR 1 N Y N Y Y Y N Y 60 12.513 12.465 12.561 21.022 19.883 22.161 0.429 0.372 0.486 5.423 2.739 8.108 -0.687 5.206
9 Expanding VAR 1 N Y N Y N N Y N 60 11.154 11.107 11.202 20.952 19.789 22.115 0.365 0.309 0.422 5.244 2.626 7.862 -0.822 5.206

10 Expanding VAR 1 N Y N Y N N Y Y 60 12.542 12.495 12.590 20.912 19.759 22.065 0.432 0.376 0.489 5.213 2.635 7.791 -0.828 5.224
11 Expanding VAR 1 N Y N Y N Y Y N 60 11.570 11.523 11.617 20.703 19.568 21.837 0.390 0.334 0.446 5.115 2.392 7.838 -0.800 5.253
12 Expanding VAR 1 N Y N Y N Y Y Y 60 12.045 11.998 12.092 20.706 19.574 21.837 0.413 0.355 0.470 4.997 2.284 7.710 -0.799 5.251
13 Expanding VAR 1 N Y N Y Y Y Y Y 60 12.438 12.387 12.490 22.429 21.027 23.830 0.399 0.341 0.456 3.061 0.707 5.416 -1.249 6.490
14 Expanding VAR 1 N Y N Y Y N Y Y 60 13.238 13.186 13.290 22.412 21.003 23.821 0.434 0.378 0.491 2.289 -0.236 4.814 -1.225 6.482
15 Expanding VAR 1 N Y N Y Y Y Y N 60 10.859 10.809 10.910 22.334 20.913 23.755 0.330 0.273 0.386 2.115 -0.343 4.573 -1.241 6.535
16 Expanding VAR 1 N Y N Y Y N Y N 60 10.558 10.507 10.609 22.332 20.885 23.779 0.316 0.259 0.373 2.096 -0.344 4.537 -1.240 6.532
17 Expanding AR 1 N N N N N N N N 60 11.238 11.179 11.297 25.922 23.696 28.148 0.299 0.245 0.352 -6.473 -8.778 -4.168 -2.289 10.887
18 Expanding N. IID 0 N N N N N N N N 60 12.467 12.410 12.525 25.269 23.010 27.527 0.355 0.301 0.408 -6.732 -8.157 -5.308 -2.478 11.580

60 11.984 11.935 12.034 43.092 40.517 45.667 0.197 0.140 0.254 -7.829 -11.170 -4.488 -0.777 5.206

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included 6 6 
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Table A5 

Top 18 Models Ranked According to Realized CER: Bayesian Optimal Allocation Applied to the Asset Menu Including 
HFRI Fixed Income Relative Value/Arbitrage Strategies (RVR) (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months) and using the predictive density from a Bayesian estimate of the predictability model for excess asset returns, 
when the priors are non-informative. Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Rolling AR 1 N N N Y N N N N 60 12.213 12.027 12.400 27.766 24.349 31.183 0.314 0.235 0.392 13.652 9.181 18.123 -0.699 3.927
2 Rolling VAR 1 N Y Y N N Y Y N 60 11.602 11.442 11.763 24.226 21.144 27.307 0.334 0.256 0.413 12.574 9.140 16.008 -0.417 4.042
3 Rolling VAR 1 N Y Y N N N Y N 60 11.389 11.225 11.553 24.729 22.772 26.687 0.319 0.247 0.391 12.469 10.938 14.000 -0.219 2.821
4 Rolling VAR 1 N Y Y N N Y N Y 60 12.903 12.730 13.077 26.046 22.333 29.759 0.361 0.282 0.440 11.642 8.384 14.899 -0.761 4.709
5 Rolling VAR 1 Y N Y Y N Y Y Y 60 11.352 10.943 11.761 30.729 20.578 40.881 0.256 0.093 0.419 11.613 6.219 17.006 -1.148 5.533
6 Rolling VAR 1 N Y Y N Y N N N 60 11.936 11.784 12.089 22.870 20.448 25.293 0.369 0.291 0.447 10.544 4.710 16.377 -0.410 4.326
7 Rolling VAR 1 N Y Y N N N Y Y 60 11.730 11.552 11.907 26.451 22.799 30.103 0.311 0.234 0.388 9.710 7.303 12.117 -0.528 4.467
8 Rolling VAR 1 N Y Y N Y Y N N 60 12.593 12.403 12.783 28.957 26.128 31.785 0.314 0.242 0.386 9.114 3.553 14.676 -0.181 3.089
9 Rolling VAR 1 Y N Y Y Y N Y Y 60 11.343 10.969 11.716 28.291 18.963 37.620 0.277 0.121 0.434 8.296 0.717 15.876 -0.742 5.543

10 Rolling VAR 1 Y N Y Y Y Y Y Y 60 10.720 10.345 11.095 28.434 20.769 36.099 0.254 0.100 0.408 7.928 -0.315 16.171 -0.743 4.331
11 Rolling VAR 1 N Y Y N N N N N 60 10.662 10.468 10.856 28.939 25.682 32.195 0.247 0.176 0.319 7.430 0.422 14.439 -0.207 3.603
12 Rolling VAR 1 N Y Y N N N N Y 60 10.558 10.386 10.730 26.001 22.964 29.039 0.271 0.199 0.343 7.145 4.410 9.880 -0.177 3.736
13 Rolling VAR 1 N Y Y N Y N N Y 60 13.216 13.052 13.381 24.797 22.067 27.526 0.392 0.322 0.462 6.788 4.670 8.906 -0.092 4.524
14 Rolling VAR 1 N Y Y N Y Y N Y 60 12.865 12.691 13.039 26.372 23.255 29.489 0.355 0.279 0.431 6.435 0.977 11.894 -0.630 3.705
15 Rolling VAR 1 N Y Y N N Y N N 60 10.545 10.357 10.733 28.316 24.686 31.945 0.249 0.175 0.322 5.756 3.176 8.336 -0.710 4.165
16 Roll. Gaussian IID 0 N N N N N N N N 60 10.257 10.069 10.444 28.149 24.979 31.320 0.240 0.169 0.311 5.426 -0.535 11.387 -0.056 3.526
17 Rolling VAR 1 N N Y N Y Y N N 60 10.247 9.728 10.765 9.684 1.829 17.538 0.697 -0.692 2.086 2.414 -10.003 14.830 -0.784 7.818
18 Rolling VAR 1 N N Y N Y N Y N 60 9.755 9.005 10.505 13.555 7.131 28.241 0.461 -0.995 1.918 1.738 -12.743 16.220 -1.261 4.987

60 12.799 12.354 13.244 20.819 9.074 32.565 0.447 -0.239 1.132 1.452 -11.694 14.598 -0.788 4.655

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Rolling VAR performance

CER 
rank Model Lags

Predictors included
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Table A6 

Top 18 Models Ranked According to Realized CER: Bayesian Optimal Allocation Applied to the Asset Menu Including 
HFRI Mergers and Acquisition Strategies (MEA) (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months) and using the predictive density from a Bayesian estimate of the predictability model for excess asset returns, 
when the priors are non-informative. Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Rolling VAR 0 N Y Y N N N Y Y 60 11.897 11.755 12.040 21.571 19.249 23.894 0.389 0.310 0.468 9.988 6.471 13.505 -0.144 4.105
2 Rolling AR 1 N N N Y N N N N 60 12.374 12.194 12.555 26.965 23.376 30.555 0.329 0.249 0.409 9.089 4.990 13.189 -0.804 5.338
3 Rolling VAR 0 N Y Y N Y Y Y N 60 12.223 12.036 12.410 28.112 24.670 31.554 0.310 0.233 0.387 6.495 4.071 8.919 -0.682 4.842
4 Rolling VAR 0 N Y Y N Y N N N 60 12.106 11.948 12.265 24.054 20.854 27.255 0.358 0.278 0.438 6.433 2.682 10.185 -0.758 5.398
5 Rolling VAR 0 N Y Y N N Y N N 60 11.426 11.259 11.593 25.258 22.191 28.325 0.314 0.238 0.389 6.407 2.261 10.552 -0.349 4.772
6 Rolling VAR 0 Y Y Y N N N Y N 60 12.390 12.222 12.559 25.012 21.751 28.273 0.355 0.281 0.429 5.830 2.702 8.958 -0.274 5.309
7 Rolling VAR 0 N Y Y N N N N Y 60 10.986 10.792 11.181 29.384 24.969 33.799 0.255 0.176 0.334 5.819 1.348 10.290 -0.843 6.330
8 Rolling VAR 0 N Y Y N Y Y Y Y 60 12.822 12.657 12.988 24.981 22.089 27.874 0.373 0.300 0.446 5.307 -0.283 10.897 -0.117 6.861
9 Rolling VAR 0 N Y Y N N Y N Y 60 12.690 12.513 12.867 26.453 22.217 30.688 0.347 0.272 0.423 4.974 1.409 8.539 -0.465 6.889

10 Roll. Gaussian IID 0 N N N N N N N N 60 11.735 11.565 11.905 25.509 21.671 29.347 0.323 0.247 0.399 4.760 0.900 8.621 -0.658 6.336
11 Rolling VAR 0 Y Y Y N Y Y N N 60 11.331 11.170 11.491 24.591 21.612 27.570 0.318 0.241 0.396 4.558 0.486 8.630 -0.642 4.795
12 Rolling VAR 0 N Y Y N N Y Y Y 60 12.069 11.890 12.248 26.959 24.137 29.780 0.318 0.248 0.388 4.544 1.674 7.415 -0.058 4.076
13 Rolling VAR 0 N Y Y N N Y Y N 60 11.813 11.650 11.976 24.463 21.130 27.796 0.340 0.263 0.417 4.250 1.602 6.898 -0.794 5.457
14 Rolling VAR 0 N Y Y N Y N Y Y 60 12.967 12.794 13.140 25.801 22.325 29.277 0.367 0.292 0.442 3.751 -0.093 7.594 -0.716 5.546
15 Rolling VAR 0 Y Y Y N N N N N 60 11.912 11.748 12.077 25.004 21.729 28.279 0.336 0.261 0.412 3.720 0.139 7.300 -0.664 5.250
16 Rolling VAR 0 N Y Y N Y Y N Y 60 12.432 12.258 12.605 26.327 23.663 28.992 0.339 0.267 0.411 3.415 -2.001 8.832 -0.300 3.956
17 Rolling VAR 0 N Y Y Y Y N N Y 60 12.632 12.450 12.814 27.616 24.458 30.773 0.331 0.260 0.401 2.600 0.110 5.090 -0.300 4.565
18 Rolling VAR 0 N N Y N Y Y Y Y 60 13.108 12.367 13.850 13.831 1.548 27.114 0.695 -0.162 1.551 2.227 -11.579 16.034 -1.029 7.938

60 11.908 11.516 12.300 19.966 10.206 29.726 0.421 -0.113 0.955 2.174 -8.378 12.726 -0.866 4.460

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Rolling VAR performance

CER 
rank Model Lags

Predictors included
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Table A7 

Top 18 Models Ranked According to Realized CER: HFRI Fund of Funds Composite (FFP) (γ = 2) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table A3 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Def. SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB

1 Expanding VAR 1 N Y N Y N Y N Y 60 13.867 12.502 14.023 60.683 49.545 71.821 0.171 0.063 0.278 14.836 7.268 21.144 0.403 5.158
2 Expanding VAR 1 N Y N Y N N N Y 60 13.787 12.500 13.943 63.709 52.619 74.799 0.161 0.053 0.270 14.306 6.569 20.753 0.404 5.227
3 Expanding VAR 1 N Y N Y Y N N Y 60 15.158 12.491 15.314 56.468 45.317 67.619 0.206 0.099 0.314 13.713 6.281 19.906 0.395 6.146
4 Expanding VAR 1 N Y N Y Y Y Y Y 60 13.691 12.491 13.849 55.691 44.420 66.961 0.183 0.074 0.292 13.575 5.974 19.910 0.438 5.273
5 Expanding VAR 1 N Y N Y Y Y N Y 60 13.676 12.486 13.833 63.163 52.034 74.291 0.161 0.053 0.269 13.225 6.167 19.106 0.442 5.301
6 Expanding VAR 1 N Y N Y N N Y Y 60 14.211 12.483 14.366 55.851 44.555 67.147 0.192 0.084 0.300 13.155 5.650 19.410 0.412 5.238
7 Expanding VAR 1 N Y N Y Y N Y Y 60 14.527 12.485 14.684 62.948 51.644 74.251 0.175 0.068 0.282 13.050 5.796 19.095 0.424 5.287
8 Expanding VAR 1 N Y N Y N N N N 60 13.058 12.481 13.214 60.791 49.623 71.960 0.157 0.050 0.265 12.924 5.837 18.829 0.429 5.266
9 Expanding VAR 1 N Y N Y N Y N N 60 16.102 12.480 16.259 59.726 48.258 71.193 0.211 0.102 0.320 12.857 5.742 18.786 0.131 5.462

10 Expanding VAR 1 N Y N Y Y N Y N 60 13.387 12.477 13.543 62.957 51.849 74.064 0.157 0.049 0.265 12.702 5.481 18.719 0.417 5.360
11 Expanding VAR 1 N Y N Y N Y Y Y 60 14.688 12.477 14.844 61.726 50.421 73.031 0.181 0.072 0.290 12.673 5.554 18.606 0.292 5.420
12 Expanding VAR 1 N Y N Y Y Y Y N 60 13.123 12.476 13.279 58.964 48.516 69.412 0.163 0.053 0.273 12.559 5.240 18.658 0.300 4.944
13 Expanding VAR 1 N Y N Y N N Y N 60 12.151 12.308 12.473 56.571 45.140 68.002 0.153 0.044 0.262 12.557 5.607 18.348 0.427 5.443
14 Expanding VAR 1 N Y N Y Y Y N N 60 13.941 12.477 14.098 63.320 52.484 74.155 0.165 0.057 0.272 12.403 5.386 18.250 0.333 5.028
15 Expanding VAR 1 N Y N Y N Y Y N 60 14.282 12.471 14.438 59.568 48.118 71.018 0.181 0.072 0.290 11.966 4.741 17.987 0.415 5.477
16 Expanding VAR 1 N Y N Y Y N N N 60 11.895 12.052 12.466 61.947 50.808 73.087 0.136 0.030 0.241 11.529 4.929 17.028 0.414 5.160
17 Expanding VAR 1 N N N Y Y N N N 60 12.468 12.170 12.527 23.999 19.029 28.970 0.374 0.263 0.485 10.603 8.185 12.619 -0.098 6.736
18 Expanding VAR 1 N N N Y Y N Y N 60 14.712 12.170 14.770 21.487 16.494 26.481 0.522 0.412 0.632 10.597 8.151 12.635 -0.098 8.736

60 12.868 12.171 12.927 46.619 38.506 54.733 0.201 0.091 0.311 10.595 8.102 12.672 0.198 5.858

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)

Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table A8 

Top 18 Models Ranked According to Realized CER: HFRI Fixed Income Relative Value/Arbitrage (RVR) (γ = 2) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table A3 for the baseline asset menu that excludes the hedge 
fund strategies. 

 

  

Term Short DY Def. SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N N N Y Y N N Y 60 14.218 14.064 14.372 60.727 51.125 70.329 0.177 -0.030 0.383 18.752 9.653 27.456 0.697 3.036
2 Expanding VAR 1 N N N Y Y Y Y Y 60 14.599 14.446 14.753 61.194 51.368 71.021 0.181 -0.035 0.398 13.872 3.706 23.596 0.669 3.066
3 Expanding VAR 1 N Y N Y Y Y N Y 60 13.646 13.592 13.701 21.930 17.179 26.681 0.463 0.253 0.672 13.336 9.694 16.820 0.893 6.363
4 Expanding VAR 1 N Y N Y Y Y Y Y 60 13.251 13.195 13.306 21.991 17.303 26.679 0.443 0.235 0.652 13.170 9.541 16.640 -0.564 4.931
5 Expanding VAR 1 N Y N Y Y N N Y 60 13.089 13.033 13.144 22.086 17.385 26.787 0.434 0.225 0.644 12.845 9.218 16.314 0.649 5.870
6 Expanding VAR 1 N Y N Y Y N Y Y 60 13.349 13.293 13.405 22.108 17.383 26.834 0.445 0.232 0.659 12.108 8.732 15.337 0.669 5.173
7 Expanding VAR 1 N Y N Y Y Y N N 60 12.704 12.645 12.764 23.599 18.738 28.460 0.390 0.173 0.607 9.628 6.322 12.792 0.397 4.627
8 Expanding VAR 1 N Y N Y N Y N N 60 13.323 13.264 13.382 23.604 18.729 28.479 0.416 0.198 0.635 9.627 6.280 12.829 0.396 4.625
9 Expanding VAR 1 N Y N Y N Y Y N 60 14.864 14.805 14.923 23.606 18.687 28.525 0.481 0.264 0.699 9.585 6.287 12.740 -0.287 6.511

10 Expanding VAR 1 N Y N Y Y Y Y N 60 13.079 13.020 13.138 23.601 18.732 28.471 0.406 0.189 0.622 9.569 6.226 12.766 0.067 4.626
11 Expanding VAR 1 N Y N Y N Y N Y 60 13.035 12.975 13.094 23.626 18.742 28.511 0.404 0.185 0.622 9.519 6.162 12.730 0.067 4.610
12 Expanding VAR 1 N Y N Y Y N N N 60 13.897 13.838 13.956 23.663 18.852 28.473 0.439 0.220 0.659 9.380 6.066 12.549 0.035 5.281
13 Expanding VAR 1 N Y N Y N Y Y Y 60 12.049 11.990 12.109 23.679 18.813 28.545 0.361 0.141 0.581 9.277 5.944 12.464 0.285 4.578
14 Expanding VAR 1 N Y N Y N N N N 60 12.138 12.078 12.198 23.692 18.811 28.573 0.365 0.145 0.584 9.225 5.893 12.412 0.284 4.570
15 Expanding VAR 1 N Y N Y Y N Y N 60 14.149 14.090 14.208 23.713 18.895 28.532 0.449 0.230 0.668 9.187 5.847 12.383 0.028 5.251
16 Expanding VAR 1 N Y N Y N N N Y 60 13.656 13.597 13.716 23.730 18.889 28.571 0.428 0.211 0.645 9.141 5.815 12.322 -0.481 4.547
17 Expanding VAR 1 N Y N Y N N Y N 60 14.327 14.267 14.386 23.744 18.830 28.658 0.456 0.236 0.676 9.047 5.701 12.247 -0.391 5.234
18 Expanding VAR 1 N Y N Y N N Y Y 60 14.634 14.574 14.694 23.769 18.886 28.651 0.468 0.248 0.689 9.019 5.695 12.197 -0.377 5.220

60 13.324 13.269 13.380 44.736 37.069 52.404 0.220 0.001 0.438 8.671 3.096 14.004 0.281 4.118

H
Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness Kurtosis
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Table A9 

Top 18 Models Ranked According to Realized CER: HFRI Fund of Funds Composite (FFP) (γ = 10) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table A3 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Def. SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB

1 Expanding VAR 1 N Y N Y N N Y N 60 8.607 8.497 8.717 20.194 19.153 21.235 0.253 0.195 0.311 9.078 4.029 14.127 -0.581 3.507
2 Expanding VAR 1 N Y N Y N N Y Y 60 8.787 8.675 8.898 20.208 19.162 21.254 0.262 0.204 0.319 9.061 4.002 14.120 -0.585 3.521
3 Expanding VAR 1 N Y N Y Y N Y N 60 9.582 9.472 9.693 20.201 19.147 21.254 0.301 0.243 0.359 9.060 4.020 14.100 -0.883 3.516
4 Expanding VAR 1 N Y N Y N Y Y Y 60 8.409 8.298 8.520 20.209 19.163 21.255 0.243 0.185 0.301 9.047 3.929 14.166 -0.585 3.522
5 Expanding VAR 1 N Y N Y N N N Y 60 8.762 8.651 8.874 20.215 19.157 21.272 0.260 0.202 0.319 9.038 3.947 14.130 -0.587 3.529
6 Expanding VAR 1 N Y N Y N Y Y N 60 9.415 9.305 9.525 20.217 19.170 21.264 0.293 0.234 0.351 9.025 3.980 14.070 -0.590 3.539
7 Expanding VAR 1 N Y N Y Y N N N 60 8.167 8.057 8.278 20.222 19.146 21.297 0.231 0.173 0.289 9.024 4.009 14.039 -0.590 3.538
8 Expanding VAR 1 N Y N Y N N N N 60 7.273 7.163 7.383 20.228 19.161 21.296 0.187 0.128 0.245 9.021 3.961 14.081 -0.193 3.549
9 Expanding VAR 1 N Y N Y Y Y Y N 60 8.200 8.089 8.310 20.218 19.151 21.285 0.232 0.175 0.290 9.015 3.926 14.104 -0.590 3.541

10 Expanding VAR 1 N Y N Y Y Y Y Y 60 8.381 8.270 8.491 20.229 19.170 21.288 0.241 0.183 0.299 9.007 3.943 14.071 -0.591 3.547
11 Expanding VAR 1 N Y N Y N Y N N 60 7.213 7.101 7.325 20.233 19.171 21.296 0.184 0.125 0.242 8.992 3.970 14.015 -0.495 3.176
12 Expanding VAR 1 N Y N Y N Y N Y 60 9.563 9.451 9.675 20.244 19.173 21.316 0.300 0.242 0.357 8.979 3.921 14.036 -0.597 3.868
13 Expanding VAR 1 N Y N Y Y Y N N 60 9.922 9.812 10.031 20.246 19.171 21.321 0.317 0.260 0.375 8.964 3.844 14.084 -0.460 3.577
14 Expanding VAR 1 N Y N Y Y N N Y 60 7.960 7.850 8.070 20.230 19.183 21.278 0.220 0.163 0.278 8.825 4.025 13.626 -0.575 3.531
15 Expanding VAR 1 N Y N Y Y Y N Y 60 7.624 7.515 7.734 20.259 19.202 21.316 0.204 0.145 0.262 8.769 4.007 13.531 -0.583 3.563
16 Expanding VAR 1 N Y N Y Y N Y Y 60 6.700 6.589 6.810 20.270 19.223 21.316 0.158 0.100 0.215 8.275 4.531 12.019 -0.521 3.940
17 Expanding VAR 1 N Y N Y Y N Y Y 60 9.837 9.614 10.059 41.442 39.411 43.472 0.153 0.096 0.210 0.486 -3.612 4.583 -0.975 3.923
18 Expanding VAR 1 N Y N Y Y N N Y 60 8.492 8.266 8.719 41.607 39.566 43.648 0.120 0.063 0.177 0.124 -3.724 3.971 -0.867 3.822

60 8.366 8.255 8.477 36.466 34.253 38.680 0.133 0.076 0.190 0.096 -4.281 4.474 -0.780 5.511

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)

Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table A10 

Top 18 Models Ranked According to Realized CER: HFRI Fixed Income Relative Value/Arbitrage (RVR) (γ = 10) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table A3 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Def. SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N Y N Y Y Y N Y 60 10.875 10.778 10.972 42.427 39.731 45.122 0.174 0.118 0.229 11.556 6.674 16.438 0.253 4.765
2 Expanding VAR 1 N Y N Y Y N N Y 60 9.975 9.878 10.073 42.736 39.985 45.488 0.152 0.097 0.206 11.211 5.571 16.851 0.140 4.726
3 Expanding VAR 1 N Y N Y Y N Y Y 60 10.536 10.437 10.636 43.565 40.789 46.341 0.162 0.107 0.216 10.295 4.433 16.157 0.119 4.781
4 Expanding VAR 1 N Y N Y Y Y Y Y 60 10.235 10.138 10.332 43.220 40.513 45.926 0.156 0.101 0.211 10.065 4.237 15.893 0.105 4.659
5 Expanding VAR 1 N Y N Y Y Y N Y 60 9.514 9.468 9.560 20.102 19.080 21.124 0.299 0.241 0.357 8.478 6.028 10.928 -0.708 3.365
6 Expanding VAR 1 N Y N Y Y N N Y 60 10.036 9.990 10.082 20.126 19.092 21.160 0.325 0.267 0.383 8.455 6.042 10.869 -0.516 3.990
7 Expanding VAR 1 N Y N Y Y Y Y Y 60 9.317 9.271 9.363 20.124 19.100 21.148 0.289 0.231 0.347 8.451 6.012 10.889 -0.513 3.384
8 Expanding VAR 1 N Y N Y Y N Y Y 60 9.905 9.859 9.950 20.071 19.038 21.104 0.319 0.262 0.376 8.130 6.023 10.237 -0.477 3.342
9 Expanding VAR 1 N Y N Y N Y Y N 60 9.292 9.244 9.341 21.243 20.148 22.338 0.273 0.216 0.329 5.975 3.441 8.509 -0.638 3.449

10 Expanding VAR 1 N Y N Y Y Y Y N 60 10.906 10.858 10.954 21.283 20.170 22.396 0.348 0.291 0.405 5.957 3.496 8.418 -0.947 3.465
11 Expanding VAR 1 N Y N Y N Y N N 60 9.814 9.765 9.863 21.366 20.260 22.473 0.296 0.239 0.352 5.948 3.346 8.550 -0.649 3.478
12 Expanding VAR 1 N Y N Y N N Y N 60 10.749 10.700 10.798 21.541 20.406 22.676 0.337 0.279 0.394 5.905 3.236 8.574 -0.663 3.514
13 Expanding VAR 1 N Y N Y Y Y N N 60 10.906 10.857 10.955 21.546 20.396 22.695 0.344 0.286 0.401 5.651 3.040 8.262 -0.690 4.194
14 Expanding VAR 1 N Y N Y N N N N 60 10.319 10.268 10.369 22.041 20.843 23.239 0.309 0.251 0.368 5.628 2.669 8.588 -0.706 4.704
15 Expanding VAR 1 N Y N Y Y N N N 60 10.921 10.871 10.971 22.185 20.962 23.408 0.335 0.276 0.393 5.548 2.428 8.669 -0.717 3.814
16 Expanding VAR 1 N Y N Y Y N Y N 60 10.074 10.024 10.123 21.688 20.481 22.895 0.303 0.246 0.360 5.302 2.826 7.778 -0.744 3.940
17 Expanding VAR 1 N Y N Y N N N Y 60 11.056 11.006 11.106 22.320 21.019 23.622 0.339 0.281 0.397 4.800 1.864 7.735 -1.052 4.202
18 Expanding VAR 1 N Y N Y N Y N Y 60 8.951 8.900 9.001 22.007 20.733 23.281 0.248 0.189 0.306 4.756 2.119 7.394 -0.825 4.041

60 9.484 9.411 9.557 35.641 33.504 37.777 0.168 0.110 0.226 4.751 2.025 7.477 -0.648 3.516

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table A11 

Summary Statistics for Monthly Recursive Optimally Rebalanced Portfolios: Baseline Asset Menu, No Transaction Costs (γ = 5) 
The tables shows sample means, standard deviations, and the lower and upper bounds of the 90% sample range of the recursive portfolio weights 
computed from a range of VAR models for predictable risk premia and of constant investment opportunities (IID) models. The table presents 
statistics for 1-m T-bill weights, long-term (infinite horizon) weights, and for their differences, the hedging demands. 

Default Term Short DY T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging T=1 Long Hedging

1 Expanding VAR 1 Y N Y N 0.000 0.011 0.011 0.033 0.028 -0.006 0.000 0.011 0.011 0.017 0.019 0.003 0.950 0.931 -0.019
2 Expanding VAR 1 Y N N N -1.723 -1.663 0.060 1.286 1.546 0.260 -1.466 -1.597 -0.131 1.133 0.995 -0.139 1.770 1.720 -0.050
3 Expanding VAR 2 Y N Y N 0.000 0.009 0.009 0.033 0.042 0.009 0.017 0.017 0.000 0.000 0.009 0.009 0.950 0.923 -0.027
4 Rolling VAR 1 Y N Y Y 0.000 0.010 0.010 0.067 0.102 0.035 0.025 0.018 -0.007 0.000 0.010 0.010 0.908 0.860 -0.048
5 Expanding VAR 1 Y Y Y N 0.000 0.009 0.009 0.025 0.018 -0.008 0.000 0.009 0.009 0.017 0.017 0.000 0.958 0.948 -0.010
6 Expanding VAR 1 Y N N N 0.000 0.010 0.010 0.017 0.010 -0.007 0.000 0.010 0.010 0.017 0.018 0.002 0.967 0.952 -0.015
7 Rolling VAR 1 Y Y N Y -1.583 -1.646 -0.062 1.603 1.689 0.086 -0.966 -0.891 0.075 0.296 0.187 -0.109 1.650 1.660 0.010
8 Rolling VAR 1 Y N N Y -1.700 -1.646 0.054 1.343 1.620 0.276 -1.073 -1.102 -0.029 0.756 0.498 -0.258 1.673 1.630 -0.043
9 Expanding VAR 1 Y Y Y Y -1.660 -1.678 -0.018 1.720 1.688 -0.032 -1.670 -1.624 0.046 0.870 0.918 0.048 1.740 1.696 -0.044

10 Rolling VAR 1 Y N Y N -1.730 -1.683 0.046 1.003 1.318 0.315 -1.233 -1.468 -0.235 1.197 1.136 -0.060 1.763 1.697 -0.066

1 Expanding VAR 1 Y N Y N 0.000 0.045 0.045 0.180 0.135 0.110 0.000 0.045 0.045 0.129 0.101 0.103 0.219 0.234 0.180
2 Expanding VAR 1 Y N N N 0.484 0.541 0.492 1.079 0.736 0.887 0.924 0.659 0.845 0.654 0.428 0.448 0.329 0.350 0.485
3 Expanding VAR 2 Y N Y N 0.000 0.040 0.040 0.180 0.183 0.122 0.129 0.099 0.101 0.000 0.040 0.040 0.219 0.252 0.195
4 Rolling VAR 1 Y N Y Y 0.000 0.044 0.044 0.250 0.290 0.161 0.156 0.100 0.136 0.001 0.044 0.044 0.290 0.337 0.268
5 Expanding VAR 1 Y Y Y N 0.000 0.039 0.039 0.157 0.099 0.108 0.000 0.039 0.039 0.129 0.098 0.100 0.201 0.200 0.155
6 Expanding VAR 1 Y N N N 0.000 0.044 0.044 0.129 0.044 0.110 0.000 0.044 0.044 0.129 0.100 0.102 0.180 0.196 0.174
7 Rolling VAR 1 Y Y N Y 0.767 0.594 0.307 0.737 0.475 0.771 1.341 1.266 0.881 1.314 1.204 0.915 0.722 0.572 0.675
8 Rolling VAR 1 Y N N Y 0.544 0.594 0.486 1.043 0.584 0.848 1.271 1.170 0.851 1.162 1.069 0.630 0.652 0.653 0.491
9 Expanding VAR 1 Y Y Y Y 0.613 0.497 0.250 0.477 0.480 0.508 0.631 0.636 0.607 0.686 0.406 0.432 0.463 0.458 0.468

10 Rolling VAR 1 Y N Y N 0.439 0.467 0.494 1.397 0.952 1.046 1.140 0.863 1.033 0.611 0.491 0.389 0.336 0.375 0.450

1 Expanding VAR 1 Y N Y N 0.000 0.164 0.164 0.000 0.200 0.000 0.000 0.164 0.164 0.000 0.195 0.164 0.500 0.800 0.000
2 Expanding VAR 1 Y N N N 0.000 2.000 0.430 3.600 1.600 3.630 2.800 2.000 2.810 0.800 1.600 0.800 0.000 0.814 0.814
3 Expanding VAR 2 Y N Y N 0.000 0.027 0.027 0.000 0.200 0.037 0.000 0.126 0.026 0.000 0.025 0.025 0.506 0.800 0.115
4 Rolling VAR 1 Y N Y Y 0.000 0.100 0.100 1.000 1.000 0.200 0.000 0.200 0.100 0.000 0.100 0.100 1.000 1.000 0.800
5 Expanding VAR 1 Y Y Y N 0.000 0.058 0.058 0.000 0.150 0.000 0.000 0.058 0.058 0.000 0.117 0.057 0.000 0.660 0.000
6 Expanding VAR 1 Y N N N 0.000 0.100 0.100 0.000 0.101 0.000 0.000 0.100 0.100 0.000 0.200 0.100 0.000 0.800 0.000
7 Rolling VAR 1 Y Y N Y 2.800 2.000 0.808 0.800 1.600 1.604 3.220 2.800 2.800 3.600 2.800 4.058 0.000 1.600 0.801
8 Rolling VAR 1 Y N N Y 0.000 2.000 0.012 3.600 1.600 2.811 2.800 2.800 4.160 3.600 3.330 1.600 0.000 1.600 0.801
9 Expanding VAR 1 Y Y Y Y 1.400 1.910 0.001 0.001 1.600 0.801 0.006 2.000 0.955 2.801 0.800 0.020 0.000 1.243 0.594

10 Rolling VAR 1 Y N Y N 0.000 1.951 0.016 3.600 3.592 3.605 2.800 2.792 3.761 0.801 1.600 0.800 0.000 1.403 1.403

Empirical 90% Range

Predictors included Cash Stocks US Long-Term Treasuries US Corporate Bonds REITs

Sample mean of portofolio weights

Sample Standard Deviation of Portofolio Weights

CER 
rank Model Lags
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Table A12 

Top 10 Models Ranked According to Realized CER: Baseline Asset Menu and No Transaction Costs (γ = 5) 

The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated 
either on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months). 

Def. Term Short DY Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Buy-and-hold

1 Rolling VAR 1 N N Y Y 60 12.069 12.012 12.125 30.204 29.264 31.244 0.300 0.245 0.356 0.548 -0.478 1.324 -0.585 6.670
2 Rolling VAR 1 Y N Y Y 60 12.568 12.511 12.624 29.634 28.658 30.675 0.323 0.267 0.378 0.546 -0.482 1.309 -0.617 6.903
3 Rolling VAR 2 Y N N Y 60 12.751 12.694 12.808 30.223 29.252 31.222 0.323 0.267 0.378 0.542 -0.469 1.313 -0.609 6.747
4 Rolling VAR 1 Y Y Y Y 60 12.244 12.188 12.299 29.729 28.765 30.741 0.311 0.255 0.366 0.518 -0.462 1.297 -0.614 6.877
5 Expanding VAR 2 Y Y Y Y 60 12.607 12.549 12.665 30.658 29.684 31.665 0.313 0.258 0.369 0.495 -0.481 1.268 -0.596 6.650
6 Rolling VAR 1 N Y Y Y 60 11.775 11.719 11.830 29.468 28.495 30.441 0.298 0.242 0.353 0.486 -0.537 1.257 -0.606 6.881
7 Rolling VAR 2 N N Y Y 60 13.307 13.249 13.365 30.471 29.514 31.478 0.338 0.282 0.394 0.473 -0.509 1.257 -0.571 6.609
8 Rolling VAR 2 N N N Y 60 12.976 12.918 13.033 30.470 29.490 31.488 0.327 0.272 0.383 0.473 -0.529 1.259 -0.571 6.609
9 Rolling VAR 2 N Y N Y 60 11.875 11.818 11.932 30.275 29.293 31.292 0.293 0.237 0.349 0.451 -0.543 1.237 -0.573 6.652

10 Rolling VAR 1 Y N Y N 60 13.047 12.988 13.105 30.631 29.676 31.672 0.328 0.272 0.384 0.450 -0.774 1.292 -0.610 6.638

60 11.692 11.589 11.794 60.917 59.169 62.887 0.143 0.087 0.198 -0.471 -0.489 -0.456 -0.686 6.152
60 12.389 12.282 12.497 59.460 57.637 61.397 0.158 0.103 0.213 -0.470 -0.488 -0.455 -0.676 6.238

Montlhy rebalancing
1 Expanding VAR 1 Y N Y N 60 12.138 12.099 12.177 20.870 20.429 21.362 0.438 0.380 0.496 9.990 8.818 10.847 -0.642 3.649
2 Expanding VAR 1 Y N N N 60 12.800 12.692 12.909 56.302 55.212 57.407 0.174 0.118 0.230 9.628 7.896 11.423 -0.330 3.046
3 Expanding VAR 2 Y N Y N 60 12.235 12.139 12.330 50.293 49.304 51.318 0.184 0.126 0.242 7.866 6.229 9.453 -0.610 3.178
4 Rolling VAR 1 Y N Y Y 60 12.701 12.661 12.740 20.771 20.327 21.229 0.467 0.411 0.523 7.519 6.729 8.258 -0.537 3.573
5 Expanding VAR 1 Y Y Y N 60 11.675 11.628 11.722 24.731 23.868 25.700 0.351 0.291 0.410 7.081 5.798 8.020 -1.374 8.364
6 Expanding VAR 1 Y N N N 60 11.769 11.724 11.814 23.807 22.921 24.795 0.368 0.308 0.429 6.856 5.860 7.635 -1.703 9.180
7 Rolling VAR 1 Y Y N Y 60 11.311 11.272 11.349 20.171 19.716 20.657 0.412 0.354 0.470 6.612 5.947 7.244 -0.605 3.907
8 Rolling VAR 1 Y N N Y 60 11.348 11.310 11.387 20.168 19.698 20.646 0.414 0.357 0.470 6.510 5.809 7.174 -0.604 3.907
9 Expanding VAR 1 Y Y Y Y 60 11.812 11.766 11.859 24.140 23.266 25.111 0.365 0.306 0.424 6.212 5.225 6.987 -1.570 8.742

10 Rolling VAR 1 Y N Y N 60 11.424 11.378 11.470 23.800 22.916 24.785 0.354 0.293 0.415 6.180 5.517 6.833 -1.659 9.071
60 12.378 12.317 12.439 41.035 40.066 42.075 0.229 0.173 0.285 -5.409 -6.003 -4.805 -1.099 6.011
60 11.722 11.644 11.801 40.395 39.369 41.466 0.216 0.159 0.272 -5.978 -6.634 -5.321 -1.333 6.076

Annualized CER (%)
Skewness KurtosisCER 

rank Model Lags
Predictors included

H
Annualized mean (%)

Median Rolling VAR performance

Median Rolling VAR performance

Annualized volatility (%) Annualized Sharpe ratio

Median Expanding VAR performance

Median Expanding VAR performance
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Table A13 

Top 18 Models Ranked According to Realized CER: HFRI Fund Weighted Composite Index (FWC) and No Transaction Costs (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

 

 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N Y N Y N Y N Y 60 12.203 12.157 12.249 20.705 19.568 21.843 0.420 0.361 0.480 10.350 8.252 12.449 -0.649 3.735
2 Expanding VAR 1 N Y N Y N N N N 60 12.323 12.276 12.370 20.671 19.543 21.798 0.427 0.369 0.485 10.240 8.220 12.259 -0.651 3.746
3 Expanding VAR 1 N Y N Y N Y Y Y 60 11.800 11.753 11.847 20.618 19.503 21.734 0.403 0.343 0.462 10.132 8.126 12.138 -0.659 3.767
4 Expanding VAR 1 N Y N Y N N Y N 60 12.690 12.643 12.737 20.616 19.493 21.739 0.446 0.388 0.504 10.113 8.093 12.133 -0.659 3.768
5 Expanding VAR 1 N Y N Y N Y Y N 60 13.046 12.998 13.094 20.610 19.487 21.733 0.463 0.404 0.522 10.073 8.078 12.069 -0.657 3.768
6 Expanding VAR 1 N Y N Y N Y N N 60 12.703 12.656 12.751 20.609 19.480 21.739 0.447 0.389 0.504 10.062 8.083 12.042 -0.657 3.769
7 Expanding VAR 1 N Y N Y N N N Y 60 11.541 11.492 11.589 21.130 20.009 22.250 0.381 0.323 0.438 10.047 7.858 12.236 -0.615 3.607
8 Expanding VAR 1 N Y N Y N N Y Y 60 12.496 12.449 12.544 20.757 19.630 21.885 0.433 0.375 0.492 10.019 7.948 12.090 -0.652 3.703
9 Expanding VAR 1 N Y N Y Y N N N 60 11.076 11.028 11.123 21.097 19.959 22.236 0.359 0.302 0.417 9.477 7.514 11.440 -0.580 3.615

10 Expanding VAR 1 N Y N Y Y Y Y N 60 12.057 12.009 12.105 20.552 19.400 21.703 0.416 0.359 0.474 9.468 7.716 11.219 -0.632 3.779
11 Expanding VAR 1 N Y N Y Y Y N N 60 12.578 12.531 12.625 20.594 19.462 21.727 0.441 0.383 0.499 9.364 7.611 11.117 -0.632 3.759
12 Expanding VAR 1 N Y N Y Y N N Y 60 11.078 11.028 11.127 21.747 20.586 22.907 0.348 0.291 0.406 9.135 7.076 11.195 -0.552 3.617
13 Expanding VAR 1 N Y N Y Y Y N Y 60 11.453 11.406 11.500 20.879 19.751 22.006 0.381 0.323 0.438 9.088 7.298 10.877 -0.627 3.656
14 Expanding VAR 1 N Y N Y Y N Y N 60 12.986 12.939 13.033 20.788 19.673 21.904 0.456 0.399 0.514 8.874 7.120 10.628 -0.636 3.686
15 Expanding VAR 1 N Y N Y Y Y Y Y 60 10.529 10.481 10.576 20.838 19.719 21.957 0.337 0.279 0.395 8.802 7.064 10.541 -0.640 3.675
16 Expanding VAR 1 N Y N Y Y N Y Y 60 10.178 10.130 10.226 21.171 20.042 22.300 0.315 0.258 0.373 8.528 6.747 10.310 -0.658 3.634
17 Expanding AR 1 N N N N N N N N 60 12.581 12.518 12.644 27.354 25.200 29.509 0.332 0.276 0.388 0.337 -0.970 1.644 -1.471 6.951
18 Exp. Gaussian IID 0 N N N N N N N N 60 11.538 11.465 11.610 31.734 29.408 34.060 0.253 0.197 0.309 -0.499 -3.391 2.394 -0.602 6.258

60 11.924 11.876 11.971 28.869 26.735 31.004 0.292 0.235 0.349 -4.159 -5.647 -2.670 -0.657 3.763

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table A14 

Top 18 Models Ranked According to Realized CER: HFRI Fund of Funds Composite (FFP) and No Transaction Costs (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor. In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N N N Y N N Y N 60 13.156 13.028 13.283 56.056 53.289 58.822 0.172 0.116 0.229 12.473 7.257 17.690 -0.182 3.261
2 Expanding VAR 1 N N N Y N Y Y N 60 12.899 12.772 13.027 56.100 53.359 58.841 0.168 0.111 0.224 12.450 7.339 17.562 -0.173 3.267
3 Expanding VAR 1 N N N Y N Y N N 60 13.424 13.296 13.552 55.900 53.136 58.664 0.178 0.121 0.234 12.407 7.686 17.128 -0.169 3.292
4 Expanding VAR 1 N N N Y N N N N 60 13.339 13.210 13.468 55.980 53.220 58.740 0.176 0.120 0.231 12.257 7.120 17.393 -0.184 3.260
5 Expanding VAR 1 N N N Y N Y N Y 60 12.183 12.056 12.311 56.019 53.266 58.771 0.155 0.098 0.212 11.768 6.837 16.699 -0.178 3.241
6 Expanding VAR 1 N N N Y N N N Y 60 12.909 12.781 13.037 56.793 54.016 59.570 0.166 0.109 0.222 11.591 5.984 17.198 -0.176 3.149
7 Expanding VAR 1 N N N Y Y Y N N 60 12.474 12.346 12.602 55.914 53.196 58.633 0.160 0.104 0.217 11.526 6.734 16.317 -0.169 3.272
8 Expanding VAR 1 N N N Y Y Y Y N 60 12.609 12.481 12.737 56.129 53.396 58.862 0.162 0.106 0.219 11.085 5.994 16.176 -0.173 3.229
9 Expanding VAR 1 N N N Y Y Y N Y 60 13.682 13.552 13.812 56.366 53.640 59.093 0.181 0.125 0.236 10.292 5.489 15.094 -0.160 3.181

10 Expanding VAR 1 N N N Y Y N Y N 60 11.941 11.813 12.069 56.423 53.697 59.149 0.150 0.093 0.206 10.203 5.026 15.381 -0.170 3.169
11 Expanding VAR 1 N Y N Y N Y Y N 60 13.294 13.247 13.341 20.668 19.551 21.784 0.474 0.415 0.533 10.004 8.000 12.008 -0.658 5.743
12 Expanding VAR 1 N Y N Y N Y N N 60 12.033 11.985 12.080 20.700 19.578 21.823 0.412 0.354 0.471 9.960 7.953 11.968 -0.625 5.530
13 Expanding VAR 1 N N N Y N Y Y Y 60 11.904 11.780 12.028 54.646 52.036 57.255 0.154 0.096 0.211 9.947 5.539 14.355 -0.317 3.122
14 Expanding VAR 1 N Y N Y N Y N Y 60 13.834 13.784 13.883 21.370 20.233 22.508 0.484 0.425 0.542 9.872 7.659 12.084 -0.910 4.586
15 Expanding VAR 1 N Y N Y N N Y N 60 11.481 11.433 11.529 21.048 19.941 22.155 0.379 0.321 0.437 9.782 7.672 11.892 -1.064 3.624
16 Expanding VAR 1 N Y N Y N N N N 60 10.672 10.623 10.720 21.427 20.274 22.581 0.335 0.277 0.393 9.764 7.521 12.008 -1.061 3.587
17 Expanding VAR 1 N Y N Y Y Y N N 60 13.670 13.623 13.717 20.994 19.864 22.123 0.484 0.426 0.542 9.518 7.474 11.562 -0.960 4.864
18 Expanding VAR 1 N Y N Y Y Y Y N 60 11.794 11.746 11.841 20.768 19.638 21.898 0.399 0.342 0.457 9.515 7.551 11.479 -0.662 4.705

60 12.444 12.394 12.493 31.765 29.362 34.168 0.282 0.224 0.340 8.814 5.682 11.947 -0.611 3.718

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Table A15 

Top 18 Models Ranked According to Realized CER: HFRI Fixed Income Relative Value/Arbitrage (RVR), No Transaction Costs (γ = 5) 
The tables shows annualized sample means, standard deviations, the Sharpe ratio, and the Certainty Equivalent Return computed from the 
recursive portfolio weights under the ten top performing (in terms of CER) models for (predictable) risk premia, as defined by the VAR order 
(where a VAR(0) is equivalent to IID, constant investment opportunities), the selection of predictors, and whether the models are estimated either 
on an expanding or on a rolling 10-year window of data. The calculations are performed assuming the investor assess realized performance with a 
5-year horizon (H = 60 months). Monthly rebalancing applies and it is taken into account by a long-horizon investor.  In the table, we have 
boldfaced all performance statistics that turn out to be superior to those recorded in Table 5 for the baseline asset menu that excludes the hedge 
fund strategies. 

 

  

Term Short DY Default SMB PtfsBD PtfsIR COM Mean 
returns

90% Conf. 
Int. - LB

90% Conf. 
Int. - UB Volatility 90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
Sharpe 

ratio
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
CER (% 

Ann.)
90% Conf. 

Int. - LB
90% Conf. 

Int. - UB
1 Expanding VAR 1 N Y N Y Y N N Y 60 12.821 12.766 12.875 22.312 20.911 23.713 0.418 0.362 0.474 11.772 9.336 14.207 -0.051 4.561
2 Expanding VAR 1 N Y N Y Y Y N Y 60 13.592 13.538 13.645 21.554 20.348 22.760 0.468 0.411 0.526 11.227 9.006 13.447 -0.345 3.909
3 Expanding VAR 1 N Y N Y Y Y Y Y 60 12.937 12.886 12.987 20.624 19.496 21.752 0.458 0.399 0.516 10.104 8.329 11.879 -0.617 3.754
4 Expanding VAR 1 N Y N Y Y N Y Y 60 12.937 12.886 12.989 20.897 19.740 22.054 0.452 0.394 0.509 10.023 8.285 11.761 -0.523 3.709
5 Expanding VAR 1 N Y N Y Y N N N 60 13.587 13.524 13.650 25.713 23.746 27.680 0.392 0.337 0.447 8.977 6.098 11.856 0.165 6.815
6 Expanding VAR 1 N Y N Y N N N N 60 13.725 13.662 13.788 25.679 23.737 27.620 0.398 0.342 0.454 8.958 6.152 11.763 0.150 6.667
7 Expanding VAR 1 N Y N Y N N N Y 60 11.827 11.765 11.889 25.391 23.541 27.241 0.328 0.273 0.383 8.811 6.018 11.604 0.032 5.988
8 Expanding VAR 1 N Y N Y N Y N N 60 12.343 12.280 12.405 25.246 23.422 27.071 0.350 0.295 0.405 8.739 6.035 11.442 -0.024 5.811
9 Expanding VAR 1 N Y N Y Y N Y N 60 13.540 13.478 13.603 25.127 23.333 26.920 0.400 0.344 0.455 8.670 6.025 11.315 -0.074 6.667

10 Expanding VAR 1 N Y N Y N N Y N 60 11.633 11.572 11.694 24.980 23.237 26.723 0.326 0.270 0.381 8.588 5.971 11.204 -0.133 5.499
11 Expanding VAR 1 N Y N Y Y Y N N 60 13.401 13.338 13.463 24.976 23.221 26.731 0.396 0.340 0.452 8.587 5.953 11.222 -0.134 5.495
12 Expanding VAR 1 N Y N Y N Y N Y 60 13.319 13.257 13.381 24.874 23.154 26.594 0.395 0.339 0.451 8.523 5.898 11.149 -0.177 6.382
13 Expanding VAR 1 N Y N Y N N Y Y 60 10.920 10.859 10.982 24.388 22.796 25.980 0.304 0.248 0.361 8.220 5.751 10.690 -0.372 4.916
14 Expanding VAR 1 N Y N Y N Y Y N 60 13.441 13.382 13.501 24.047 22.529 25.566 0.413 0.357 0.470 7.971 5.625 10.318 -0.701 5.662
15 Expanding VAR 1 N Y N Y Y Y Y N 60 11.765 11.707 11.824 23.745 22.265 25.226 0.348 0.292 0.404 7.731 5.555 9.908 -0.614 4.492
16 Expanding VAR 1 N Y N Y N Y Y Y 60 12.988 12.929 13.046 23.639 22.170 25.109 0.401 0.344 0.459 7.626 5.418 9.834 -0.755 5.450
17 Expanding vAR 1 N N N Y Y N N Y 60 11.970 11.818 12.123 62.344 59.486 65.201 0.136 0.080 0.192 2.672 -2.136 7.479 -0.143 2.942
18 Expanding VAR 1 N N N Y Y Y N Y 60 12.906 12.753 13.059 61.961 59.098 64.824 0.152 0.096 0.208 0.863 -3.723 5.450 -0.171 2.935

60 13.690 13.631 13.748 31.778 29.378 34.178 0.321 0.263 0.378 0.338 -2.091 2.767 -0.614 5.583

Annualized volatility (%) Annualized Sharpe ratio Annualized CER (%)
Skewness KurtosisH

Annualized mean (%)

Median Expanding VAR performance

CER 
rank Model Lags

Predictors included
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Figure A1 

Realized Portfolio Return Volatility Across Alternative Asset Allocation Models 
The plots represent the mean (as a solid horizontal line), median (as a cross), and realized 90% 
range (as a bin) of OOS volatility obtained with reference to a recursive, portfolio exercise for the 
sample 2004:01 – 2019:12. The calculations are performed assuming the investor assess realized 
performance with a 5-year horizon (H = 60 months) and using the predictive density from a 
Bayesian estimate of the predictability model for excess asset returns, when the priors are non-
informative. Monthly rebalancing applies and it is taken into account by a long-horizon investor. 

Best Model: Frequentist MethodsBest Model: Frequentist Methods

Median Model: Frequentist Methods 

Best Model: Bayesian Methods 
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