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Abstract 

We analyze the recursive, out-of-sample performance of asset allocation decisions based on 

financial ratio-predictability under single-state linear and regime-switching models. We adopt 

both a statistical perspective to analyze whether models based on the dividend-price, earning-

price, and book-to-market ratios can forecast excess equity returns, and an economic approach 

that turns predictions into portfolio strategies. The strategies consist of a portfolio switching 

approach, a mean-variance framework, and a long-run dynamic model. We report an 

interesting disconnect between a statistical perspective, whereby the ratios yield a modest 

forecasting power, and a portfolio approach, by which a moderate predictability is occasionally 

sufficient to yield significant portfolio outperformance, especially before transaction costs and 

when regimes are taken into account. However, also when regimes are considered, 

predictability gives high payoffs only to long-horizon, highly risk-averse asset managers. 

Moreover, different strategies deliver different performance rankings across predictors. 

Finally, we find evidence inconsistent with the notion that increasing sophistication in the way 

portfolio decisions are modeled, delivers a superior performance. 
 

Key words: predictability, Markov switching, economic value, optimal portfolio choice. 

 

1. Introduction 

Whether excess equity returns may be predictable using simple (aggregate) financial ratios 

represents one of the classical debates in the literature and appears to be rooted in the early 

† Corresponding author. Address: Bocconi University, Finance dept., via Roetgen 1, 20136 Milan, Italy. E-mail: 
massimo.guidolin@unibocconi.it. Tel.: +39-02-5836.3556. 
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attempts to test the celebrated (weak-form) efficient markets hypothesis, i.e., the claim that trading 

prices would contain all relevant information, thus making impossible to achieve any risk-adjusted 

profit exploiting only public information, see e.g., the review in Rapach and Zhou (2012). As of today, 

the literature has still not reached an agreement, with empirical papers offering conclusions that 

range from stark rejections of the hypothesis of statistically predictable excess returns on the basis 

of simple financial ratios (see, e.g., Bossaerts and Hillion, 1999; Welch and Goyal, 2008) to a less 

sanguine view that leaves the possibility open that for some data sets and predictors, and under 

appropriate constraints and restrictions on the resulting allocations, predictability may exist and 

be exploitable (see e.g., Campbell and Thompson, 2008, Cardinale et al., 2014; Cochrane, 2008; 

Famy, 2007; Guidolin et al., 2009).  

This debate has often emphasized the need to take steps beyond a discussion of whether 

excess asset returns would be statistically predictable, to tackle the issue of the economic value 

associated to such a weak predictability (see, e.g., Bulla et al., 2011; Campbell and Thompson, 2008; 

Cardinale et al., 2014; Fugazza et al., 2009; Pesaran and Timmermann, 1995). Moreover, a strand of 

the literature exists that has shown that capturing the instability in standard predictive 

regressions—for instance, through models that are included in the standard toolkit available to 

portfolio managers, such as regime switching models (see e.g., Ang and Bekaert, 2004; Ang and 

Timmermann, 2011; Bulla et al., 2011; Fabozzi et al., 2006; Guidolin and Ria, 2011; Henkel et al., 

2011; Kritzman et al., 2012)—may not only increase the (in- and out-of-sample) predictability of 

excess stock returns, but also generate non-negligible economic value, in the form of superior risk-

adjusted realized performances. In this paper, we contribute to this debate by systematically 

examining whether, when, and how a few standard valuation ratios may predict excess equity 

returns and generate risk-adjusted outperformance when we take into account that most predictive 

relationships are subject to statistical instability and appear to be elusive even to relatively 

experienced analysts. In addition, we investigate of a few of the boundaries—here represented by 

the complexity of the asset allocation models, the inclusion of transaction costs, and the length of 

the investment horizon when periodic rebalancing is possible—that may delimit the “space” of 

effectiveness of regimes in portfolio choice. 

The interest of the portfolio management literature for statistical models featuring alternative 

regimes is relatively unsurprising. Financial markets change their behavior over time following bull 
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and bear cycles that shape the distribution of excess asset returns. Contrary to standard jumps, 

which are transitory and sudden price movements, these shifts can be characterized by such a 

persistence to the point of making it compelling to consider them in asset allocation decisions.2 In 

particular, standard predictive regressions may be unable to fit the properties of most return series, 

because these are often generated by more complicated models that reflect the presence of 

persistent shifts in the strength with which predictors affect excess returns (see Ang and 

Timmermann, 2010, and Guidolin, 2011b). The Markov switching models used in this paper, allow 

us to perform inference on structural breaks and to capture the dynamics of financial returns. 

In particular, in this paper we investigate under which conditions it is possible to forecast  

excess stock returns through three alternative aggregate financial indicators—the dividend-price 

(henceforth, DP), the earning-price (EP), and the book-to-market (BM) ratios—in a way that allows 

investors to obtain valuable risk-adjusted performances.3 To perform this exercise, we resort to 

three of the most robust predictors that the previous literature has isolated (see Rapach and Zhou, 

2013, and Welch and Goyal, 2008), with reference to a standard set of US monthly data for the 

sample 1926-2012. The novelty of our work consists in recognizing that the very strength of the 

statistical predictability may be time-varying according to a regime-switching process driven by a 

standard first-order Markov chain. Our analysis is then articulated on the contrast between the 

weakness of the statistical predictability characterizing the data in the case of simple regression 

models and the likelihood that sizeable risk-adjusted profits may be generated by adopting a 

portfolio strategy that exploits not only the signals provided by the financial ratios, but also those 

coming from an estimated hidden Markov state. 

The breadth of the effort that we perform represents one of the key features of our work. Our 

results derive from a range of statistical models that include simple regressions that use predictors 

on the right-hand side, Markov switching (MS) regressions that imply time-varying slope 

coefficients associated to the predictors, and Markov Switching Vector Autoregressions (MSVAR) 

that endogenize the dynamics of the predictor variables. Moreover, we perform an analysis of three 

different asset allocation frameworks. First, we implement simple switching strategies à la Pesaran 

2 See Das and Uppal (2003) or Guidolin and Ossola (2009) on whether accounting for standard jumps in 
optimal asset allocation has a chance to cause first-order impacts. 
3 In this paper we only use one predictor at the time. Indeed, as discussed by Welch and Goyal (2008) and 
Rapach and Zhou (2013) this approach offers identical or even stronger predictive performances as models 
that employ all predictors at the same time, in what is called a “kitchen-sink” design. This is presumably due 
to considerable problems of multicollinearity and parameter proliferation that tend to plague larger models.  
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and Timmermann (1995) that best characterize risk-neutral investors, in which an asset manager 

goes long in stocks only when the predicted risk premium is positive. Second, we adopt static mean-

variance (henceforth, MV) strategies that characterize risk-averse investors, that assumes that 

higher variances ought to be compensated by higher means, but ignore higher moments of excess 

return distribution. Finally, we discuss dynamic strategies in which a risk-averse investor with 

power utility preferences accounts for the effects of predictability and regimes on the forecast 

density of excess returns. In the case of switching strategies, when it is easy to do so in a coherent 

way—that is, ex-ante, before the selection of portfolio weights are selected, which occurs—we 

perform this analysis discounting three alternative levels of transaction costs in order to capture 

how investors may be affected for different degrees of wealth invested and professional skill.4 When 

computing optimal portfolio weights we consider three levels of risk aversion, both under MV and 

under power utility preferences. Finally, a variety of investment horizons, ranging from 1 to 60 

months, are analyzed. 

In the first part of the paper, we find that, at least in a statistical perspective (in comparisons 

with a simple average excess return benchmark), the three ratios display weak out-of-sample 

forecasting power for US equity excess returns over the sample period January 1956 – December 

2012. Consistently with earlier papers (see, e.g., Almadi et al., 2014; Dangl and Halling, 2012; Lettau 

and Van Nieuwerburgh, 2008; Paye and Timmermann, 2006; Weigand and Irons, 2007), it turns out 

that the predictive power of the ratios is time-varying, as captured by a simple and yet powerful 

two-state MS models.5 In the case of both linear and MS models, the strength of OOS predictability 

increases with the horizon.6 

Given the modest forecasting power exhibited by the three ratios, in the second part of our 

paper, we assess whether the ratios are able to generate any economic value, in the form of an 

improvement of the realized (possibly, risk-adjusted) performance. Under simple switching 

4 Fabozzi et al. (2006) discuss the importance of considering transaction costs ex-ante. However, this is 
particularly tricky under dynamic portfolio strategies in the presence of regimes, see, e.g., Jang et al. (2007). 
5 The poor OOS predictive ability of our ratios has been connected to possible estimation biases due to their 
high persistence and to the possibility that spurious regressions issues may affect inference (see Nelson and 
Kim, 1993, and Stambaugh, 1999). As explained by Guidolin (2011a), MS models may capture the persistence 
in the ratios through the Markov chain variable that drive MS mixing and yet preserve stationarity. 
6 Samuelson (1969) and Merton (1969) showed that when investors have power utility and asset returns are 
identically and independently distributed over time (IID, hence unpredictable), horizon effects are absent, 
i.e., optimal asset allocations turn myopic. However, since the 1990s a few papers (e.g., Barberis, 2000) 
showed that the horizon plays a crucial role in assessing whether predictability has any economic value. 
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strategies, the EP ratio yields the most promising results: when we do not account for transaction 

costs, the switching strategy based on MS predictive regressions produces higher mean returns than 

the benchmark at all investment horizons. However, the superior realized performance declines 

with the horizon. Returns from the switching strategy are less volatile than the ones from the 

benchmark. However, the results are less stark when we account for transaction costs: only at long-

term horizons, EP-based strategies generate incremental performances vs. the benchmarks. MS 

performances for the DP and BM ratios are similar but weaker, as in these cases transaction costs 

take a clean sweep of any risk-adjusted profits. Interestingly, we often observe that strategies that 

exploit MS are unable to generate higher average profits than simpler strategies and yet these may 

outperform in risk-adjusted terms because these imply a lower risk exposure. Yet, when transaction 

costs (even though these are accounted for when setting up the strategies to avoid wasteful trades) 

are imputed, realized returns decline enough to also compromise the risk-adjusted measures. 

Next, we explicitly consider risk-averse investors. Under MV preferences, the economic value 

generated by all predictors turns increasingly positive when the investor becomes more risk averse. 

Indeed, when we consider highly risk averse investors, the MV allocation based on predictive 

regressions yields a higher certainty equivalent return than a strategy that disregards predictability 

(at least for long-term investment horizons). On the contrary, for an investor with the lowest risk 

aversion coefficient none of the predictors achieves better results (in terms of realized certainty 

equivalent) than a strategy that ignores predictability. Robustness checks extend these exercises to 

power utility, constant-relative risk aversion investors that use more sophisticated MSVAR models 

to jointly, recursively forecast both excess stock returns and predictors. Such more complex MS 

predictive frameworks reveal that the EP ratio always delivers some positive economic value, in 

terms of gains in certainty equivalent return, vs. simple no-predictability, strategies, in particular 

for short-term horizons. On the contrary, a strategy that exploits predictability of the BM ratio 

outperforms the IID benchmark only at a long-term (5-year) horizon. Finally, the gains deriving 

from predictability based on the DP ratio are instead modest and similar to those obtained when 

ignoring predictability entirely. 

We obtain important insights on the economic value that accounting for elusive, unstable 

predictability (see Timmermann, 2008)—here captured in a MS framework—may offer to asset 

managers. On the one hand, and consistently with the earlier literature, capturing shifts in 
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predictability regimes moderately improves OOS statistical performance and offers a chance of 

creating economic value to investors. On the other hand, this occurs mainly in favor of long-horizon 

investors who are highly risk averse. This occurs because MS models represent poor devices to 

implement market timing strategies, i.e., the switching dynamics may be modelled but never 

precisely predicted. Equivalently, MS models are in general mediocre tools to forecast the short-run 

dynamics of the conditional density of excess returns. On the contrary, MS models offer accurate 

predictions of the shape of the long-run, essentially unconditional density of excess returns. In this 

respect, MS models provide more precise estimates of the shape (thickness) and asymmetries 

(skewness) of such long-run densities and hence allow risk-averse investors to appropriately hedge 

their portfolios thus obtaining stronger risk-adjusted performances. In fact, this occurs even though 

accounting for regimes tends to reduce average realized performances, especially net of transaction 

costs.7 

Finally, we also perform robustness checks using relatively sophisticated MSVAR models in 

which the joint dynamics of excess equity returns and the predictors is captured and we assume 

preferences that integrate over the entire (conditional) predictive density to allow for expected 

utility maximization.8 Such additional back-tests fail to lead to any marked improvement in ex-post 

realized performance. In fact, often the strategies that imply frequent rebalancing (and this is 

anticipated as a possibility already at inception in the choice of weights) lead to inferior realized 

performances. Although additional tests (e.g., with other predictors) and more sophisticated regime 

switching models (e.g., threshold models or MS with time-varying transition probabilities) may 

yield better outcomes, it seems that most of the benefits of MS can be harvested using relatively 

simple statistical approaches and that these mostly concern long-term, highly risk averse investors. 

The rest of the paper is structured as follows. In Section 2 we introduce our data set. Section 

3 provides details on the statistical in-sample and OOS results. In Section 4, we describe the 

investment strategies and report our key findings on the economic value of financial ratio-driven 

7 This finding echoes Lettau and van Nieuwerburgh’s (2008) result that it is the uncertainty in the estimation 
of the nature and size of the steady state shifts in predictive relationships rather than the estimation of their 
exact dates that is ultimately responsible for the failure of the real-time out-of-sample linear predictions to 
beat the benchmark average sample return. 
8 This extension follows Guidolin and Timmermann (2007) who investigate the effects of regimes in stock 
and bond returns for asset allocation under constant relative risk aversion preferences. They find that even 
when portfolio weights depend on regimes, the dividend yield remains a relevant predictor. Our paper 
extends their results to different predictors, alternative preferences, and - at least in the simplest framework 
- accounts for transaction costs. 
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predictability. In Section 5, we test the robustness of our findings when preferences feature constant 

relative risk aversion and under dynamic MSVAR models. Section 6 concludes. 

2. The Data 

In order to assess the predictive power of alternative ratios we base our research design on the 

same data as Welch and Goyal (2008). We collect monthly US data on equity market returns, risk 

free rate, dividend, earnings, and book-to-market ratios spanning the January 1926 - December 

2012 sample. Our dependent variable, i.e., excess equity returns, is calculated as the difference 

between returns on the Standard & Poor Index, provided by the Center for Research in Security 

Press (CRSP) and the risk-free rate, approximated by the US Treasury bill rate. As for the latter, we 

use the “3-month Treasury Bill Secondary Market rate” series from the Federal Research Economic 

Data (FRED) repository of the Federal Reserve Bank of Saint Louis for the period 1933-2012. 

Because this series is not available before 1933, we use the “US Yields on Short-Term United States 

Securities, Three-Six Month Treasury Notes and Certificates, Three-month Treasury” series, 

available from the National Bureau of Economic Research (NBER) database for the earlier sub-

sample, 1926-1933. 

The first predictor, the dividend-price ratio, is computed as the natural logarithm of the ratio 

between monthly dividends and price: at the end of each month in the sample, we take the 11-month 

lagged value of the S&P 500 index as the denominator and the 12-month moving average of the 

dividends paid by all the shares included in the index as the numerator. Similarly, the second 

predictor, the earnings-price ratio, is obtained as the natural logarithm of the ratio between the 12-

month moving average of the earnings reported by all S&P 500 companies and the 11-month lagged 

value of the index. Finally, the third predictor, the book-to-market ratio, is calculated as the ratio 

between the aggregate book value of all Dow Jones Industrial Average companies and the market 

capitalization of the index, as in Welch and Goyal (2008).9 We focus on these three predictors 

because the bulk of both the academic and practioners’ literatures have often returned on their 

business cycle properties and predictive performance (see e.g., Campbell and Shiller, 2001; 

Cardinale et al., 2014, Weigand and Irons, 2007, and references therein). 

9 The data on the earnings and the dividends of the S&P 500 companies are from Robert Shiller’s website for 
the period 1926-1987 (at http://www.econ.yale.edu/~shiller/data.htm). For the period from 1988 to the 
end of the sample, we use the S&P Corporation dataset. For the second part of the sample we perform the 
interpolation of quarterly earnings suggested by Welch and Goyal (2008). Finally, the book values come from 
the Value Line’s website, in particular their Long-Term Perspective Chart of the Dow Jones Industrial Average. 
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Table 1 presents the key summary statistics for stock returns, excess equity returns, and the 

three predictors. The average monthly return is 0.80%, implying an average annual return of 9.6%, 

while the annualized volatility is 19%. The return in excess of the risk-free rate is 0.50% per month 

(6% on an annualized basis) and corresponds to a Sharpe ratio of approximately 0.32. All the series 

show deviations from a normal distribution and we can always reject the null hypothesis using a 

Jarque-Bera test based on deviations of skewness and kurtosis from the Gaussian values of zero and 

three, respectively. In particular, the distribution of equity returns and excess returns is left-skewed 

and displays fatter tails than a normal distribution (see Jones and Stine, 2010; Stoyanov et al., 2011). 

3. Statistical Evidence of Predictive Ability of Alternative Ratios 

In this section, we develop a set of recursive out-of-sample (OOS) exercises to assess the (pseudo) 

real time predictive power of the three valuation ratios introduced in Section 2, namely the DP, the 

EP, and the BM ratios. We rely on two alternative statistical frameworks: standard, single-state 

univariate regressions, one for each predictor; Markov switching regressions that capture any 

instability in the predictive relationships in the data. 

3.1 Univariate linear regressions 

Following Goyal and Welch (2008), we estimate a set of standard, single-state univariate 

regressions, of the form:  

                                                        𝑟𝑟t+h = 𝛼𝛼ℎ + 𝛽𝛽ℎ𝑋𝑋t + 𝜀𝜀t+h ,                                                          (1) 

where 𝑟𝑟t+h is the excess return at time t+h, 𝛼𝛼ℎ is the intercept, 𝛽𝛽ℎ is a slope coefficient, 𝑋𝑋t is the 

predictor at time t (𝐷𝐷𝐷𝐷t,𝐸𝐸𝐷𝐷t, and 𝐵𝐵𝐵𝐵t, respectively), and 𝜀𝜀t+h~𝑁𝑁(0,𝜎𝜎𝑡𝑡+ℎ2 ) is the residual. The forecast 

horizon h is set equal to 1, 6, and 60 months, respectively, so that we obtain three regressions for 

each selection of a predictor. The results of the estimation of these regressions are reported in the 

first column of Table 3. We observe that all the proposed ratios turn out to be statistically significant 

in-sample predictors of excess returns when we set the forecasting horizon equal to 1 or 6 months. 

Instead, the null of 𝛽𝛽ℎ equaling zero can never be rejected when we set h to 60 months. So, in a 

statistical perspective, there is in-sample evidence of predictability over short horizons but not 

much predictive power persists at the longest horizons. 

In order to assess and compare the OOS predictive ability of the three ratios, we estimate the 

forecasting regressions recursively on the basis of the data available only up to a given time t, where 
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t expands over a period ranging from January 1951 to December 2012.10 Figure 1 plots the evolution 

over time of the slope coefficients associated to the three predictors at a 1-month horizon. The 

coefficient of the DP ratio is rather stable over the whole period, with a small estimated value of 

approximately 0.02. Instead, the estimated coefficients of the EP and BM ratios visibly decline over 

time, from 0.03 to 0.01 and from 0.04 to 0.02, respectively. To evaluate the OOS forecasting power 

of our predictors we compute the RMSFE (root-mean-square forecast error), defined as follows: 

𝑅𝑅𝐵𝐵𝑅𝑅𝑅𝑅𝐸𝐸(ℎ) = �∑ (�̂�𝑟𝑖𝑖,𝑡𝑡+ℎ−𝑟𝑟𝑖𝑖,𝑡𝑡+ℎ)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 ,                                                        (2) 

where �̂�𝑟𝑖𝑖,𝑡𝑡+ℎ is the horizon-h forecast of the excess return, 𝑟𝑟𝑖𝑖,𝑡𝑡+ℎ is the realized excess return, and 𝑛𝑛 

is the number of times that the recursive exercise is repeated. We also compute the RMSFE of a no-

predictability Gaussian IID benchmark with constant mean and variance and compare it with the 

one implied by the univariate predictive regressions. In practice, we subtract the RMSFE of each 

predictive regression to the one of this baseline model, such that a negative difference means that a 

predictive model implies a worse predictive accuracy than the benchmark, while a positive 

difference signals that our model is more accurate than the simple IID model that hinges forecasts 

on a recursively estimated sample mean. We perform the exercise for each of our predictors at the 

three prediction horizons listed above.  

Figure 2a plots the differences in RMSFE between the baseline model and a regression on the 

DP ratio. Interestingly, at short horizons (1 and 6 months), the two models yield approximately the 

same accuracy. Instead, at a 5-year horizon, the performance changes abruptly over time: before 

the 1970s, the naïve, recursive sample mean displays stronger predictive power than the dividend-

price ratio, while the situation flips around later in the sample. Figure 2b shows the differences in 

RMSFE between the baseline model and a regression on the EP ratio. The results are similar to the 

ones obtained for DP: the two models show comparable forecasting performances at 1- and 6-

month horizons; instead, at a 5-year horizon the EP ratio yields a slightly higher accuracy. Finally, 

Figure 2c compares the baseline model with a regression on the BM ratio. In this case, the “winning 

model” changes over time: until the 1970s the BM ratio outperformed the unconditional mean at 

the 1- and 6-month horizons, while it underperforms in the subsequent period; however, exactly 

the opposite happens when we consider a 5-year horizon. In contrast with the in-sample evidence, 

10 The initial coefficient estimates are obtained using data from January 1926 to December 1950. This implies 
that our first forecast regression predicts the excess return for January 1951 (h=1 month), for June 1951 (h= 
6 months), and for December 1955 in the case of h=60 months. For the sake of homogeneity and to avoid 
showing results based on few observations only, all our figures in what follows start out in January 1966. 
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our OOS results shows that genuine forecast power actually increases with the return horizon. This 

is consistent with findings reported in previous literature (see, e.g., Fama and French, 1988, who 

report that the 𝑅𝑅2 statistic increases strongly with the horizon when the predictor variable is highly 

persistent, as our valuation ratios are and more recently Almadi et al., 2014). 

3.2 Univariate Markov switching regressions 

In Section 3.1, we have noted that none of our predictors was able to persistently outperform 

a baseline model where we forecast returns employing their unconditional, recursive sample mean. 

In addition, we have emphasized some degree of instability in the predictive ability of the three 

ratios. Consequently, in this section, we extend the empirical evidence by using a simple regime 

switching process driven by a standard first-order, homogeneous, irreducible and ergodic Markov 

chain to accommodate the potential time-varying predictive power of our predictors. In particular, 

we specify the following Markov switching intercept heteroskedasticity (henceforth, MSIH), model: 

       𝑟𝑟t+h = 𝛼𝛼𝑆𝑆𝑡𝑡+1,ℎ + 𝛽𝛽𝑆𝑆𝑡𝑡+1,ℎ𝑋𝑋t + 𝜎𝜎𝑆𝑆𝑡𝑡+1𝜀𝜀t+h         𝜖𝜖𝑡𝑡+ℎ~IID 𝑁𝑁(0,1),                             (3) 

where the intercept, slope coefficients, and the variance all depend on an unobservable state 

variable 𝑅𝑅𝑡𝑡. Regime switches in 𝑅𝑅𝑡𝑡 are assumed to be governed by the transition probability matrix, 

P, with elements: 

Pr(𝑠𝑠𝑡𝑡 = 𝑖𝑖|𝑅𝑅𝑡𝑡−1 = 𝑗𝑗) = 𝑝𝑝𝑗𝑗,𝑖𝑖,     𝑖𝑖, 𝑗𝑗 = 1, … , 𝑘𝑘                                           (4) 

where k is the number of regimes assumed in the analysis. The parameters are estimated by 

optimizing the likelihood function associated with (3) and (4). Because the state variable is 

unobservable, this should be treated as a latent variable and thus we use the EM algorithm to update 

our parameter estimates, as suggested by Hamilton (1989).11 Importantly, the EM algorithm will 

naturally deliver time-varying (smoothed) estimates of state probabilities of the “system” defined 

by the econometric model to be in each of the regimes at each point in time. 

To determine the number of regimes we conduct an in-depth specification search with values 

of k = 1, 2, 3. Notably, when k = 1, our specification collapses back to the linear model described in 

equation (1). To assess if a number of regimes higher than one is required we perform the test 

proposed by Davies (1977) and we find that the single-state linear model is always misspecified. 

Table 2 reports the values of the Hannan-Quinn (HQ), Akaike (AIC), and Bayes-Schwartz (BIC) 

11 For an in-depth review of the estimation methods required to perform the required model calibrations, 
please refer to Guidolin (2011a) or the textbook introduction in Fabozzi et al. (2006).  
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information criteria, which trade off fit against parsimony, for alternative specifications of each 

model.12 Both the HQ criterion and the AIC point towards a three-regime model. However, for all 

the predictors and the forecasting horizons the more parsimonious BIC indicates a two regime 

model. Accordingly, and to offer the simplest, starkest case, in what follows we recursively estimate 

a MSIH (2) model. 

3.3 Model estimates 

Table 3 reports parameter estimates for the two-state MS regressions for each of the three 

predictors at 1-, 6-, and 60-month horizons. It is easy to provide a common interpretation of the two 

regimes across the different regressions: regime 1 is always characterized by high volatility (on 

average, approximately three times the volatility in regime 2) and a shorter duration than regime 

2. Regime 2, instead, represents a low volatility, very persistent regime (approximately 8 years of 

average duration vs. 12 months in the case of regime 1). As a result, we shall refer to regime 1 as the 

high-volatility regime and to regime 2 as the low-volatility regime.  

The first panel of the table reports parameter estimates for three regressions of excess stock 

returns on the DP ratio. While this ratio shows substantial (in terms of the size of the estimated 

coefficients) predictive power for excess returns at all forecasting horizons in the low-volatility 

regime, the corresponding 𝛽𝛽 coefficient is only significant at the 1-month horizon. The second panel 

contains parameter estimates for the EP ratio regressions. Interestingly, in contrast to the linear 

model, where we were able to find a statistical significant predictive relationship between EP and 

excess returns, in the MS case we are never able to reject the null hypothesis that 𝛽𝛽 is equal to zero 

at a 10% size. Finally, the last panel of the table reports the results for the BM ratio. Contrary to DP, 

the BM ratio retains some forecasting power only in the high-volatility regime at both 1- and 6-

month horizons. This finding suggests that drawing conclusions as to which ratio is able to better 

forecast excess equity returns may heavily depend on the market regime assumed by an analyst 

(Almadi et al., 2014; Dangl and Halling, 2012; Gonzalo and Pitarakis, 2012). All in all, even when 

regimes are taken into account, the evidence of in-sample predictability remains mixed and it tends 

to concentrate in different regimes for different predictors. Moreover, also in the case of MS 

12 As discussed in Brooks (2014) among other textbook treatments, the goal of a researcher employing 
information criteria in model selection consists in minimizing them. 
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predictive regressions, across different regimes and predictors, the longer the horizon is, the 

weaker the strength of the in-sample evidence of predictability. 

3.4 The forecasting performance of Markov switching models 

In this section we perform the same OOS exercise discussed in Section 3.1, now applied to the 

MS regressions estimated in Section 3.3. This allows us to both compare the predictive ability of the 

three ratios and to assess whether a model that accounts for regime shifts may deliver better 

predictive performance than a simple linear regression. To provide an example of how an asset 

manager will operationalize the predictability framework offered by a MS model such as the ones 

in Table 2, Figure 1 plots the recursively estimated 𝛽𝛽 coefficients in the high-volatility and in the 

low-volatility regimes at a 1-month horizon. In addition, the dashed line represents the evolution 

over time of the smoothed 𝛽𝛽 computed as the weighted average of regime-specific slope coefficients 

with weights equal to the smoothed probabilities. Notably, in the high-volatility regime the 𝛽𝛽 

coefficients of all the three predictors are visibly higher than in the low-volatility regime, thus 

implying that the predictive power of the different ratios notably changes over time. 

Figures 2a through 2c compare the predictive accuracy of the MS regressions both with a 

Gaussian IID model and the standard linear regressions discussed in Section 3.1. Figure 2a plots the 

dynamics of the differences in RMSFEs implied by the DP ratio at different horizons. In particular, a 

positive difference signals that the two-state MS regression outperforms the benchmark model. 

Interestingly, the MS regression that uses the DP ratio consistently outperforms both the Gaussian, 

sample-mean model and the linear regression at a 6-month horizon; however, it underperforms 

both benchmarks at a 1-month horizon. The finding is less clear at a long-term (5-year) horizon, as 

the MS model underperforms its benchmarks until the 1970s, while the opposite holds later.  

Figure 2b performs the same comparison for the EP ratio. In this case, the MS model is not 

able to significantly outperform either the standard sample average model or the linear one. 

Conversely, it underperforms both benchmarks at a 1-month time horizon in the period from 1972 

to the end of the sample and at a 5-year horizon until the 1970s. Finally, Figure 2c shows our OOS 

RMSFE findings concerning for the BM ratio. Also in this case, the MS model is in general unable to 

deliver better predictions than a simple Gaussian model or a linear regression, particularly at 1- and 

6-month horizon. In conclusion, both linear and MS predictive regressions occasionally outperform 

a simple IID model that uses the unconditional mean to forecast aggregate excess stock returns. 
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However, the statistical evidence of predictive ability of the three ratio is mostly weak and never 

persistent over time, especially for short-term horizons. However, as discussed in the Introduction, 

because an investor ought to be chiefly interested in the economic value that using the financial 

ratios as predictors may deliver, in the next section we exploit the forecasts from all of our models 

to build simple and therefore insightful investment strategies that exploit any predictability in the 

data, however weak. 

4. Investment strategies 
4.1 Switching strategies 

In this section, we assess whether a simple switching investment strategy à la Pesaran and 

Timmerman (1995), which allocates all the available wealth alternatively in stocks or Treasury bills 

(which are assumed to yield a risk-free rate), is able to outperform a passive buy-and-hold (B&H) 

strategy on the S&P index when the former is based on the statistical evidence of predictability 

reported in Section 3. In practice, we build our switching strategy such that at time t the investor 

decides her asset allocation until t+h depending on the sign of her forecast of the excess equity 

return up to time t+h. If the model predicts a positive excess outperformance of the stock index, the 

investor allocates all her wealth to equities, otherwise she simply invests in Treasury bills. The 

exercise is recursively repeated for a sample spanning the period 1956 - 2012, so that on every 

month the investor selects her optimal portfolio based on all the data available up to that point.13 

We consider three different holding periods (1, 6, and 60 months) matching the forecasting 

horizons already examined in Section 3. When the investment period exceeds 1 month, we implicitly 

consider “overlapping” investors (i.e., the first investor decides her allocation from t to t+h, the 

second one invests between t+1 and t+h+1 and so on). The realized value of wealth at the end of 

each holding period is equal to:  

𝑊𝑊𝑡𝑡+ℎ = 𝑊𝑊𝑡𝑡[(1 + 𝑅𝑅𝑡𝑡+ℎ)𝐼𝐼(𝐸𝐸𝑅𝑅)𝑡𝑡 + (1 + 𝑅𝑅𝑅𝑅𝑡𝑡+ℎ)(1− 𝐼𝐼(𝐸𝐸𝑅𝑅)𝑡𝑡],                          (5) 

where 𝑊𝑊t is wealth at the beginning of the period,𝑅𝑅𝑡𝑡+ℎ is the equity return between 𝑡𝑡 and 𝑡𝑡 + ℎ, 

𝑅𝑅𝑅𝑅𝑡𝑡+ℎ is the risk-free rate between t and 𝑡𝑡 + ℎ, and 𝐼𝐼(𝐸𝐸𝑅𝑅)𝑡𝑡 is a dummy variable that equals 1 when 

all wealth is invested in the index and 0 otherwise. The average realized performance of the 

13 Our initial regression is based on data from December 1955 to December 2012, such that the first predicted 
excess return concerns January 1956 for h=1 month, June 1956 for h= 6 months and December 1960 for h=60 
months. Similarly to Section 3, for the sake of comparability and to avoid showing results based on few 
observations all our charts start from January 1966. This also applies to all the exercises presented in Sections 
4 and 5. Such expanding window schemes are now typical in the literature, see, e.g., Almandi et al. (2014). 
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recursive implementation of this strategy is compared with the average performance of the B&H 

strategy where all the initial wealth is invested in the equity index until the end of the sample period. 

We compute (monthly) realized mean, variance, and the Sharpe ratio (see Hubner, 2007, for a 

justification, as the resulting managed portfolio is an exclusive, directional investment vehicle) of 

returns from both strategies to assess whether the use of the forecasts generated by our predictive 

regressions may produce better results than a passive strategy, both in terms of improving average 

realized returns or reducing their variance (thus increasing risk-adjusted performance). The 

exercise is performed twice, using the forecasts from single-state as well as two-state MS models to 

investigate whether modelling and predicting regime changes leads to an increase in the economic 

performance of the predictive regressions.  

When we backtest investors’ decisions in real time, it is of paramount importance to account 

for transaction costs, especially considering that our benchmark is a zero cost (passive) B&H 

strategy that in reality can be easily replicated with a cheap index fund. In the case of the active 

strategies introduced above, an investor will incur costs any time she decides to switch from equity 

to risk-free bonds and vice versa. In particular, any time she trades, she will incur costs related to 

bid-ask spreads, stamp duties, and commissions. The estimation of the level of such costs is of 

course not trivial. Following Bhardway and Brooks (1992), Lesmond et al. (1999), and Stoll and 

Whaley (1983), Lynch and Balduzzi (2000) report and impute round-trip costs of 100 bps for 

investor trading directly individual stocks on the NASDAQ and the NYSE. Keim and Madhavan 

(1997) show that for large and liquid stocks, institutional investors pay a round-trip cost of 

approximately 38 bps. However, as pointed out by Lynch and Balduzzi (2000), the cost of trading 

future contracts on the S&P 500 index is much lower and may vary from 2 to 5 bps (although this 

estimate does not take into account margin requirements and rolling costs caused by the expiry of 

the front-end future in case of long investment horizons). In our analysis, we present the results for 

three different levels of (proportional) transaction costs: zero, 25 bps and 50 bps. The investor will 

consider the transaction costs when deciding to switch from the risk-free asset to equity: if the cost 

of switching is higher than the predicted equity excess return she will not change her allocation; 

similarly, if the negative excess return from staying in stocks is less than the transaction costs, she 

will refrain from closing her position in the index. 
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The realized performances of the alternative strategies at different horizons are reported in 

Table 4. The first panel shows the results for the DP ratio. Interestingly, the switching strategy is 

never able to produce mean returns higher than the B&H strategy, irrespective of the holding 

period, even under zero transaction costs. Indeed, the B&H strategy yields a mean return of 0.77% 

per month, while a switching strategy based on linear forecasts generates returns of 0.73% and 

0.66% per month for short and long investment horizons, respectively (again, assuming zero 

transaction costs). These results do not improve much even when we use the MS model to forecast 

S&P 500 index returns. However, the returns of the switching strategy become less volatile than the 

ones of the B&H strategy. This is not surprising because we verify that the switching strategy tends 

to suggest to invest in the less volatile Treasury bills at any time when the forecasts for equity 

returns are negative, i.e., during the high volatility regime. Occasionally this realized reduction in 

volatility more than compensates the lower average realized returns from the switching strategy 

leading to an outperformance of the latter in terms of realized Sharpe ratios. In particular, a linear 

predictive regression shows higher risk-adjusted performance than the B&H strategy at short-term 

investment horizons (but not at long-term ones) when we consider zero transaction costs (the 

Sharpe ratio is 0.089 vs. 0.084). Yet, this advantage disappears when we consider transaction costs. 

Indeed, under high transaction costs, the Sharpe ratio of a MS-based strategy at short-term 

investment horizons even turns negative as the realized returns do not exceed the risk-free rate.  

The second panel shows the results for the EP ratio. This ratio yields a higher predictive power 

(in terms of ability to generate positive economic value) than the DP ratio. Indeed, if we do not 

account for transaction costs, the switching strategy based on MS predictive regressions produces 

higher mean returns than the benchmark at all investment horizons. The superior realized 

performance equals 0.05% per month for short-term horizons, but it is only 0.02% for long-horizon 

ones. In addition, also in this case, the returns from the switching strategy are less volatile than the 

ones from the benchmark, so that the stronger performance is more evident in terms of risk-

adjusted returns. However, the situation is less clear when we account for the transaction costs. 

Indeed, if we consider short-term investment horizons, the switching strategy is never able to 

outperform the benchmark either in terms of realized returns or of risk-adjusted criteria. However, 

for long-term (5-year) horizons, the strategy based on linear predictive regressions generates a 

return of 0.82% per month vs. 0.77% for the B&H benchmark. 
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Finally, the last panel of Table 4 contains the results concerning the economic value 

assessment for the BM ratio. Also this ratio seems to generate value when compared to the passive 

strategy when we ignore transaction costs, especially at short investment horizons. Indeed, a 

switching strategy based on MS forecasts leads to realized average returns equal to 0.80% (at a 1-

month horizon) and 0.78% (at a 6-month horizon) to be contrasted to the 0.76% of the B&H strategy 

and to Sharpe ratios of 0.975 and 0.942, respectively (versus 0.837 from the B&H benchmark). Also 

for long term investment horizons, the MS strategy generates a higher risk-adjusted performance, 

even if it does not beat the benchmark in terms of raw average returns. However, as soon as 

transaction costs are included, the dynamic strategies lose their uphand vs. the passive one.  

In conclusion, the use of the DP ratio as a predictor of equity returns does not seem to generate 

better performances than a simple B&H passive strategy, even if we ignore transaction costs. 

Notably, this is quite surprising if we consider the hit-ratio of our MS predictive regression, i.e., the 

percentage of correct signs of excess return predictions. Indeed, a MS predictive regression based 

on DP succeeds in forecasting the sign of stock excess returns 49.5% of times for 1-month 

investment horizon, 51.4% of times for 6-month investment horizon and 67.5% of times for 60-

month investment horizon (vs. 41.3%, 49.80%, and 59.90% of a linear predictive regression). The 

hit-ratio of MS predictive regressions is even better in the case of EP and BM ratios, where it exceeds 

70% for long-term investment horizons. Considering that the strong ability to correctly predict the 

signs of the excess returns do not turn into large economic gains, this may indicate that MS 

predictive regressions fail to forecast large negative returns (see e.g., Famy, 2007; Leung et al., 

2000). However, we should also keep in mind that, while a strong performance in terms of correct 

sign predictions has been previously noticed to be necessary for large economic value to be 

generated (see e.g., Leitch and Tanner, 1991), this does not represent a sufficient condition. 

Yet, when we forecast returns using the BM and, especially, the EP ratio, we are able to 

produce some economic value, at least under zero transaction costs (which may indeed represent a 

realistic assumption in the case of some large institutional investors). In addition, if we consider 

their risk-adjusted performance (measured by the Sharpe ratio), switching strategies based on EP 

and BM ratios occasionally outperform the benchmark even when we deduct rather massive 

transaction costs (especially for long-term horizons). Interestingly, DP-driven forecasts – arguably 

the ones who have received the most attention in the literature (see e.g., Barberis, 2000, and 
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references therein) – are the only ones that fail to support economic value generation on a robust 

scale. Finally, we notice that MS predictive regressions generally deliver similar (and occasionally 

better) realized returns than the linear ones, with one single exception: in the case of long-term 

horizons simple linear regressions perform better than the MS ones. 

4.2 Mean-variance strategies 

In this section, we follow the approach proposed by Campbell and Thomson (2008) to assess 

whether predictive regressions alternatively based on DP, EP, or BM ratios are able to generate a 

meaningful improvement in realized portfolio performance to an investor characterized by a 

standard mean-variance utility function defined over terminal wealth, 𝑊𝑊𝑡𝑡+ℎ , with a coefficient of 

risk aversion 𝛾𝛾 > 1, and an investment horizon of h months: 

𝑈𝑈(𝑊𝑊𝑡𝑡+ℎ) = 𝐸𝐸[𝑊𝑊𝑡𝑡+ℎ] − 𝛾𝛾
2
𝑉𝑉𝑉𝑉𝑟𝑟[𝑊𝑊𝑡𝑡+ℎ].                                                     (6) 

The investor is supposed to maximize the utility function by selecting at time t (and holding 

such a selection until t+h) the optimal allocation 𝜔𝜔∗ to equity, while 1 − 𝜔𝜔∗ is invested in risk-free 

Treasury bills. In order to prevent short-selling, we constrain 𝜔𝜔∗ to be positive and lower than or 

equal to 100%. Simple algebra (see Campbell and Thomson, 2008) reveals that the optimal 

conditional portfolio rule is 

𝜔𝜔∗ = �1
𝛾𝛾
� 𝜇𝜇+𝑥𝑥𝑡𝑡

𝜎𝜎𝜀𝜀,𝑡𝑡
,                                                                           (7) 

where 𝑥𝑥𝑡𝑡  is a function of our predictor 𝑋𝑋𝑡𝑡 , namely 𝑥𝑥𝑡𝑡 = 𝛼𝛼� + 𝛽𝛽𝑋𝑋𝑡𝑡 − 𝜇𝜇. Notably, an investor’s portfolio 

allocation at time t depends on her forecast of 𝑟𝑟𝑡𝑡+ℎ, which is based on the observed value of our 

predictor. Consequently, the denominator of the formula is the standard error of the residual of our 

predictive regressions. 

After having determined the optimal recursive weights using (7), we also compute the ex-

post, realized certainty equivalent value (CEV), and compare it with the matching CEV from a MV 

strategy based on a simple IID model where the best forecast of future returns is the sample mean. 

The exercise is recursively repeated from 1951 to 2012, following the same logic already adopted 

for the switching strategy discussed above (i.e., we consider overlapping investors for holding 

periods longer than one month). Table 5 shows the average differences in the realized utility (Δ 

CEV) of the mean-variance strategies alternatively based on our predictive regressions and on an 

IID model, at 1-, 6-, and 60-month investment horizons and for different values of the risk aversion 

coefficient (γ=2, 5, and 10). A positive value of this difference implies that a MV strategy based on 
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the predictive regressions outperforms the one based on an IID model in terms of risk-adjusted 

realized portfolio performances. The results for each predictor are based on our two alternative 

predictive models, linear vs. MS regressions. In addition, we report the test statistics of a difference-

in-means test, to assess whether ΔCEV is significantly different from zero. In particular, the test 

statistic is computed as follows:  

                𝑡𝑡 = 𝛥𝛥𝐶𝐶𝐶𝐶𝐶𝐶������

�(𝜎𝜎�2𝑋𝑋+𝜎𝜎�
2𝐼𝐼𝐼𝐼𝐼𝐼+𝜎𝜎�𝑋𝑋,𝐼𝐼𝐼𝐼𝐼𝐼)/𝑛𝑛

 ,                                             (8) 

where n is the number of observations in our pseudo OOS period, 𝜎𝜎�2𝑋𝑋 is the sample variance of the 

realized returns from the MV strategy based on a predictive regression, 𝜎𝜎�2𝐼𝐼𝐼𝐼𝐼𝐼 is the sample variance 

of the realized returns from the MV strategy based on an IID model, and 𝜎𝜎�𝑋𝑋,𝐼𝐼𝐼𝐼𝐼𝐼 is the sample 

covariance of the two sets of realized strategy returns.  

In general terms, the most salient result that we can detect is that the economic value 

generated by predictability turns increasingly positive when the investor becomes increasingly risk 

averse. Indeed, when we consider γ=10 (which represents extremely risk averse individuals) the 

MV allocation based on predictive regressions yields a higher CEV than a strategy that disregards 

predictability (at least for long-term investment horizons). On the contrary, for an investor with the 

lowest risk aversion coefficient (γ=2) none of our predictors seems to achieve better results (in 

terms of realized CEV) than a strategy that ignores predictability. Indeed, at long (5-year) 

investment horizons, the MV strategy based on our three predictors even underperforms the 

benchmark, thus generating a negative and statistically significant ΔCEV.  

The first panel of Table 5 reports the results for the DP ratio. The ability of predictability to 

generate meaningful economic value is rather modest. Indeed, ΔCEV is positive and statistically 

significant only when we consider γ=10 and a long-term (5-year) investment horizon. In addition, 

only a regime-switching predictive regression delivers a positive utility gain (ΔCEV equal to 0.0501 

vs. -0.0624 of the linear predictive regression). The second panel shows the results for the EP ratio, 

and the third one for the BM ratio. The results are very similar to the ones already commented for 

DP: in particular, only a MS regression is able to outperform the simple IID model, but this is limited 

to the case of a strongly risk-averse investor with a long-term holding period (ΔCEV equals 0.0508 

and 0.0557, for EP and BM ratio, respectively). 

Finally, Figure 3 plots the OOS realized ΔCEV computed between the strategy based on MS 

predictability and the one based on a simple IID model, at different investment horizons and for 
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different levels of risk aversion. MS predictability is never able to produce a significant utility gain 

at a short-term investment horizon, no matter the predictor we decide to use. However, it is possible 

to exploit predictability over longer time windows (e.g., 5-year, and, occasionally 6-month horizons) 

when the investor is highly risk-averse. Interestingly, although the strategy based on MS 

predictability at 5-year horizon outperforms the benchmark for a large part of the sample period, it 

has a poor performance during the early years 1966-1969, for all the predictors. Indeed, that period 

was characterized by returns that were much lower than the predicted ones, meaning that all 

models and especially MS did over-forecast excess stock returns. 

In conclusion, the results of this exercise are different from the ones obtained from simple 

switching strategies in two ways. First, when a MV portfolio choice algorithm is recursively 

implemented, the performance of different ratios is much more homogeneous, to the extent that it 

becomes now difficult to identify a predictor that clearly outperforms the others using a risk-

adjusted portfolio metric. Secondly, a MV strategy that accounts for predictability delivers better 

results at long-term horizons, while the switching strategy outperforms the benchmark at short 

horizons. In addition, while in the case of switching strategies the MS regressions were 

underperforming a linear model for longer holding periods, the reverse is true when we implement 

MV allocation. These findings must be related to the power of MS models to better measure and 

predict the dynamics of risk over time, in such a way that when optimal allocations are computed 

taking ex-ante risk into account (as a MV investor obviously does) and realized performances are 

ex-post estimated in a risk-adjusted manner, it takes medium-to-long investment horizons for MS 

to outperform the benchmarks, consistently with the risk management and portfolio evidence 

reported by Guidolin and Timmermann (2006, 2007). 

5. An Extended Framework: Dynamic Portfolio Strategies in Dynamic Models 

In Section 4, we have analyzed the implications of predictability, in terms of portfolio value 

generation, for MV investors with different degrees of risk aversion. Yet, a one may argue that a MV 

investor only takes into account the first two moments of the distribution of excess returns, which 

is in contrast with the evidence of the presence of skewness and kurtosis arising in Table 1. This 

also disregards the much advertised ability of mixtures of normal distributions – of which our MS 

predictive framework represents one such case – to capture non-normalities in the predictive 

density of excess risky returns (see Guidolin, 2011a, for a discussion and references). Consequently, 
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in this section we test the robustness of our results by extending our analysis to an investor 

characterized by a power utility function over terminal wealth,  a coefficient of risk aversion 𝛾𝛾 >

1, and an investment horizon of h months: 

𝑈𝑈(𝑊𝑊𝑡𝑡+ℎ) = 𝑊𝑊𝑡𝑡+ℎ
1−𝛾𝛾

1−𝛾𝛾
.                                                                       (9) 

It is well known (see Bekaert et al., 1998; Jones and Stine, 2010; Malevergne and Sornette, 2005) 

that besides implying a constant coefficient of relative risk aversion, power utility preferences make 

expected utility of an investor a function of predictive skewness, predictive excess kurtosis, and 

more generally of the relevant and possibly time-varying features of predictive density functions of 

terminal wealth. We follow a recent literature (see e.g., Guidolin and Timmermann 2007; Guidolin 

and Hyde, 2012) and investigate whether more realistic preferences and robust models that 

endogenize returns and predictors may reveal different results on the value of MS predictability. 

 In parallel to the comparison we have performed between single- and two-state predictive 

regressions, we extend the earlier econometric frameworks by adopting two alternative models to 

forecast excess returns. First, following Barberis (2000), we use a standard VAR (1) model:  

�
𝑟𝑟𝑡𝑡
𝑥𝑥𝑡𝑡� = �

𝜇𝜇
𝜇𝜇𝑥𝑥�+ 𝐴𝐴 �

𝑟𝑟𝑡𝑡−1
𝑥𝑥𝑡𝑡−1�+ �

𝜀𝜀𝑡𝑡
𝜀𝜀𝑥𝑥,𝑡𝑡

�,                                                       (10) 

where r is the excess return, x is the predictor, and (𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑥𝑥,𝑡𝑡)~𝑁𝑁(0,Ω). This single-state model 

generalizes our earlier predictive regression to the case in which both returns and the predictor are 

endogenous. Second, following Guidolin and Timmerman (2007), we extend our analysis to an 

investor that forecasts excess returns using a Markov switching VAR, which allows a VAR-type 

relationship between the predictor and equity returns to vary across different states. In particular, 

we perform a standard model selection process to select a two-state VAR (1).14  

Similarly to Barberis (2000) and Guidolin and Timmerman (2007), we consider both a 

framework where the initial allocation is kept fixed till the end of the holding period (which is set 

equal to 1, 6, and 60 months) and an allocation problem where the investor is able to rebalance her 

portfolio dynamically at regular intervals. In practice, the terminal wealth of the investor equals:  

𝑊𝑊𝑡𝑡+ℎ = (1 − 𝜔𝜔)𝑒𝑒𝑅𝑅𝑅𝑅𝑡𝑡+ℎ + 𝜔𝜔𝑒𝑒𝑅𝑅𝑡𝑡+ℎ,                                                      (10) 

where the initial wealth is normalized to 1, h is the investment period, 𝜔𝜔 is the portion of initial 

wealth invested in equity, 𝑅𝑅𝑅𝑅𝑡𝑡+ℎ is the risk free rate that applies between t and t+h, and 𝑅𝑅𝑡𝑡+ℎ is the 

14 The results of the specification search and the estimates of the VAR (1) and MSVAR (2,1) (i.e., characterized 
by two regimes and one lag) models are not reported to save space but are available upon request.  
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equity return over the holding period. The investor maximizes the expected utility of her terminal 

wealth conditional on the information available at time t: 

𝑚𝑚𝑉𝑉𝑥𝑥𝜔𝜔𝐸𝐸𝑡𝑡 �
�(1−𝜔𝜔)𝑒𝑒𝑅𝑅𝑅𝑅𝑡𝑡+ℎ+𝜔𝜔𝑒𝑒𝑅𝑅𝑡𝑡+ℎ�

1−𝛾𝛾

1−𝛾𝛾
�,                                                      (11) 

where 𝜔𝜔 is constrained such that 𝜔𝜔 ∈ [0,1] to avoid short-selling. Consequently, to find the optimal 

weights the investor has to solve: 

𝑚𝑚𝑉𝑉𝑥𝑥𝜔𝜔 ∫
�(1−𝜔𝜔)𝑒𝑒𝑅𝑅𝑅𝑅𝑡𝑡+ℎ+𝜔𝜔𝑒𝑒𝑅𝑅𝑡𝑡+ℎ�

1−𝛾𝛾

1−𝛾𝛾
𝑝𝑝�𝑅𝑅𝑡𝑡+ℎ�𝑧𝑧, 𝜃𝜃��d𝑅𝑅𝑡𝑡+ℎ                                           (12) 

where p�𝑅𝑅𝑡𝑡+ℎ�𝑧𝑧, 𝜃𝜃�� is the distribution of future returns conditional on the estimated parameters 𝜃𝜃� 

and on past values of returns. We approximate the integral for expected utility with Monte Carlo 

techniques by drawing a number M equal to 20,000 of simulated 𝑅𝑅𝑡𝑡+ℎ from our return generating 

process and computing:  
1
𝑀𝑀
∑ ��(1−𝜔𝜔)𝑒𝑒𝑅𝑅𝑅𝑅𝑡𝑡+ℎ+𝜔𝜔𝑒𝑒𝑅𝑅𝑡𝑡+ℎ�

1−𝛾𝛾

1−𝛾𝛾
�𝑀𝑀

𝑖𝑖=1 .                                                        (13) 

We perform the computation for ω=0.01, 0.02, …, 0.99 and choose the weight that maximizes (13). 

 When we also consider the possibility that the investor optimally rebalances her portfolio 

over the holding period, then we have to solve a dynamic programming problem. We divide the 

investment horizon into J intervals [𝑡𝑡0, 𝑡𝑡1], … , �𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑗𝑗� such that the investor rebalances her 

portfolio at time �𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑗𝑗−1�. In our case each interval is equal to one year; consequently, the 

results of rebalancing and non-rebalancing strategies will be identical whenever the holding period 

is lower than one year. At this point we solve the problem by using backward induction.15  

Figure 4 shows the average compensatory fees which make an investor with a risk aversion 

coefficient γ = 5 and holding periods of 1, 6, and 60 months indifferent between a strategy that 

exploits predictability and one that ignores it. We present the results for both the MSVAR and the 

linear VAR model for an investor that rebalances her portfolio within the holding period and a one 

who does not. Interestingly, when we use a MSVAR to model predictability, the EP ratio is always 

able to deliver some positive economic value, in terms of gains in certainty equivalent, with respect 

to a simple IID strategy, in particular for short-term horizons. On the contrary, a strategy that 

exploits predictability of the BM ratio outperforms the IID benchmark only at a long-term (5-year) 

horizon. Finally, the gains deriving from predictability based on the DP ratio are modest and limited 

to the case of a linear strategy without rebalancing with a 5-year investment horizon. 

15 For discussion of the solution to the dynamic programming problem see Guidolin and Timmerman (2007).  
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Interestingly, we notice that the compensatory fees are much lower (and often negative) for 

an investor who is allowed to rebalance her portfolio with yearly frequency than for a buy-and-hold 

investor. Indeed, it seems that an investor who does not have the chance to rebalance her portfolio 

manages to achieve higher gains from predictability. This is especially true as far as linear 

predictability is considered. However, this is not surprising: in fact, a linear model is misspecified 

because it disregards the existence of regimes; consequently, when we iterate it to forecast long-

run densities and hence compute optimal long-run strategies in the case of rebalancing strategies, 

the errors cumulate over-time, leading to negative compensatory fees. All in all, these findings 

confirm the robustness of our earlier results that improvements in realized portfolio performances 

are possible by exploiting predictability, especially when MS are taken into account and especially 

for long-horizon investors. The dominance of EP over the other predictors and especially DP also 

emerges to be stark, when risk-averse individuals are considered. 

6. Conclusions 

This paper has adopted both statistical and economic approaches to investigate whether standard 

(aggregate) valuation ratios (namely, the dividend-price, the earning-price, and book-to-market 

ratios) show evidence of predictive power for excess stock returns that may be concretely exploited 

by asset managers to achieve a risk-adjusted outperformance. We contribute to the long-standing 

literature on predictability of excess stock returns at least in two ways. First, we propose an 

extensive set of different strategies that are popular among asset managers—from simple switching 

strategies that invest alternatively in stocks or the risk-free asset, to dynamic portfolio allocations—

in order to assess whether increasing sophistication leads to superior ex-post realized performance. 

We find that the implementation of more sophisticated frameworks that consider also higher 

moments of excess returns (i.e., skewness and kurtosis) does not strengthen the allocation 

strategies that exploit predictability. In particular, when the investor is let free to rebalance her 

portfolio with annual frequency, predictability struggles to generate any additional economic value. 

Second, we recognize that most predictive relationships may be time-varying and that the use of 

regime-switching models to capture such instability may lead to an improvement in the economic 

value of forecastable excess returns. 

Our results have interesting implications for asset managers. We find that, despite the three 

ratios prove to have a weak forecasting power in a statistical perspective (compared to a simple 

22 
 



average benchmark), they can still be used to select portfolio allocations that deliver better realized 

risk-adjusted performances than strategies that disregard predictability. In particular, our analysis 

indicates that MS forecast models turn out to be a useful tool to a long-term, highly risk-averse 

investor. Indeed, MS models are generally superior at predicting the shape of the long-run, 

unconditional density of excess returns, while they are in general mediocre tools to forecast the 

short-run dynamics. As for the performance ranking of the three alternative predictors, the 

earnings-price ratio turns out to be the most effective one, outperforming the popular dividend-

price ratio in the majority of the exercises. 

Finally, we call the attention on the fact that, when transaction costs are taken into account, 

they may erode any superior performance achieved thanks to predictability. However, in this paper 

we only consider transaction costs applied to switching strategies, where it is simple to account for 

them “ex-ante”, such that the investor will refrain to implement switches in allocation that would 

yield more cost than value. Such ex-ante computations would not be trivial when more 

sophisticated optimization techniques were adopted to select the portfolio allocation and may 

represent an interesting extension to our paper. 

In Famy (2007) standardised variables (i.e., that represent information about the current level 

of a variable relative to its recent history) appear to have more forecasting power than raw 

variables. It would be interesting to check the effects of standardizing our variables on the economic 

value of predictability. Although with reference to US data, McMillan (2011) shows that the bond-

equity yield ratio has predictive power for stock returns. McMillan et al. (2014) use a range of 

macroeconomic variables to show that most low frequency predictability, especially at long 

horizons, derives from time-varying risk premia. While valuation ratios may better detect the 

typical decline in the equity risk premium near business cycle peaks, macroeconomic variables 

more readily pick up the rise in the premium later in recessions near cyclical troughs". It follows 

that combining both sets of predictor variables may significantly improve the overall forecasting 

performance. 

Weigand and Irons (2007) have extensively argued in favor of the predictive power of the 

(inverse of the) price-earning ratio. However, they emphasize the importance of comparing short- 

and long-term earning-price ratios. Almadi et al. (2014) have recently proposed using diffusion 

indices (i.e., principal components) to summarize the complex information in a myriad of 
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macroeconomic and valuation ratios to strengthen predictability. It would be interesting to check 

whether using these additional techniques to distil predictors may affect our conclusions when 

combined with Markov switches. 
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Table 1: Summary Statistics 
The table shows summary statistics for nominal stock returns, the risk-free rate, excess stock returns, and the three predictive 
valuation ratios analyzed. The Jarque-Bera’s statistic refers to a test used to assess whether a series has a Gaussian distribution. 

 

 
 

Table 2: Model Selection at Different Forecast Horizons 
The table shows statistics to support model selection across linear (K = 1) and non-linear Markov switching (K = 2 and 3) models.  

  

Mean St. Deviation Median Skewness Kurtosis Minimum Maximum Jarque-Bera
Stock Returns 0.008 0.055 0.012 -0.459 7.768 -0.348 0.357 1025.550
Risk-free Rate 0.003 0.003 0.003 1.037 1.271 0.000 0.013 317.168
Excess Returns 0.005 0.055 0.009 -0.408 7.707 -0.349 0.357 992.674
Dividend-Price Ratio -3.338 0.455 -3.310 -0.369 -0.081 -4.524 -1.873 436.671
Earnings-Price Ratio -2.715 0.421 -2.759 -0.729 2.788 -4.836 -1.775 94.450
Book-to-Market Ratio 0.582 0.265 0.558 0.726 1.528 0.121 2.028 185.950

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1 month 3 8 15 1043 347.7 130.4 69.5 1546.54 1729.77 1741.59 -2.9598 -3.302 -3.311 -2.9544 -3.287 -3.284 -2.9456 -3.264 -3.240

6 months 3 8 15 1038 346.0 129.8 69.2 1538.58 1721.09 1742.03 -2.9587 -3.301 -3.328 -2.9533 -3.286 -3.301 -2.9444 -3.263 -3.256
5 years 3 8 15 984 328.0 123.0 65.6 1468.66 1642.48 1662.79 -2.979 -3.322 -3.349 -2.9733 -3.307 -3.321 -2.9641 -3.282 -3.275

1 month 3 8 15 1043 347.7 130.4 69.5 1547.21 1725.57 1747.90 -2.9611 -3.294 -3.323 -2.956 -3.279 -3.296 -2.947 -3.256 -3.252

6 months 3 8 15 1038 346.0 129.8 69.2 1538.34 1716.91 1730.75 -2.9583 -3.292 -3.306 -2.953 -3.278 -3.279 -2.944 -3.255 -3.234

5 years 3 8 15 984 328.0 123.0 65.6 1468.29 1641.59 1657.04 -2.9782 -3.320 -3.338 -2.973 -3.305 -3.309 -2.9633 -3.281 -3.263
1 month 3 8 15 1043 347.7 130.4 69.5 1547.69 1728.36 1739.90 -2.962 -3.299 -3.308 -2.9566 -3.285 -3.281 -2.9478 -3.261 -3.236

6 months 3 8 15 1038 346.0 129.8 69.2 1539.79 1718.63 1739.69 -2.9611 -3.296 -3.323 -2.9556 -3.282 -3.296 -2.9468 -3.258 -3.252

5 years 3 8 15 984 328.0 123.0 65.6 1468.07 1640.62 1655.77 -2.9778 -3.318 -3.335 -2.9721 -3.303 -3.307 -2.9629 -3.279 -3.260
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Table 3: Linear and Markov Switching Model Estimates at Different Forecast Horizons 
The table shows coefficient estimates for linear and Markov switching models with two states: 

𝑅𝑅t+1 = 𝛼𝛼𝑆𝑆𝑡𝑡+1 + 𝛽𝛽𝑆𝑆𝑡𝑡+1𝑋𝑋t + 𝜀𝜀t+1𝜀𝜀t+1~(0,𝜎𝜎𝑆𝑆𝑡𝑡+1
2 ). 

Note: boldfaced coefficients are significant with a p-value of 0.1 or less.  

Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

Estimate 0.0275 0.1515 0.0348 0.0068 0.0572 0.0079 Regime 1 0.922 0.078
Std. Err 0.0126 0.0915 0.0103 0.0037 0.0310 0.0030 Regime 2 0.010 0.990
t-stat 2.1788 1.6560 3.3875 1.8146 1.8447 2.6152

Estimate -0.0309 0.0931 0.0386 0.0146 0.0365 0.0091 Regime 1 0.927 0.073
Std. Err 0.0159 0.0784 0.0102 0.0035 0.0258 0.0030 Regime 2 0.010 0.990
t-stat -1.9434 1.1878 0.0030 4.2315 1.4166 2.9963

Estimate 0.0182 0.0320 -0.0428 0.0042 -0.0084 0.0074 Regime 1 0.913 0.087
Std. Err 0.0155 0.0103 0.0889 0.0039 0.0278 0.0031 Regime 2 0.009 0.991
t-stat 1.1742 3.0965 -0.4812 1.0681 -0.3017 2.4051

Estimate 0.0284 0.0466 0.0193 0.0087 0.0231 0.0042 Regime 1 0.920 0.080
Std. Err 0.0111 0.0851 0.0103 0.0040 0.0304 0.0038 Regime 2 0.011 0.989
t-stat 2.5569 0.5472 1.8742 2.1500 0.7611 1.0820

Estimate 0.0221 0.0700 0.0203 0.0080 0.0315 0.0045 Regime 1 0.923 0.077
Std. Err 0.0156 0.1033 0.0088 0.0042 0.0369 0.0033 Regime 2 0.010 0.990
t-stat 1.4167 0.6770 2.3178 1.9174 0.8542 1.3978

Estimate 0.0125 0.0219 -0.1642 0.0030 -0.0534 0.0054 Regime 1 0.912 0.088
Std. Err 0.0152 0.0093 0.1169 0.0046 0.0419 0.0035 Regime 2 0.009 0.991
t-stat 0.8224 2.3513 -1.4040 0.6564 -1.2725 1.5752

Estimate -0.0040 -0.0773 0.0067 0.0152 0.0799 0.0029 Regime 1 0.911 0.089
Std. Err 0.0041 0.0254 0.0036 0.0064 0.0296 0.0057 Regime 2 0.012 0.988
t-stat -0.9813 -3.0442 1.8901 2.3623 2.7012 0.5084

Estimate -0.0904 -0.0578 0.0042 0.0223 0.0588 0.0070 Regime 1 0.920 0.080
Std. Err 0.0105 0.0220 0.0036 0.0064 0.0277 0.0057 Regime 2 0.011 0.989
t-stat -8.6095 -2.6307 1.1636 3.5000 2.1198 1.2224

Estimate 0.0039 -0.0050 0.0027 0.0009 -0.0183 0.0078 Regime 1 0.912 0.088
Std. Err 0.0096 0.0235 0.0038 0.0067 0.0317 0.0059 Regime 2 0.009 0.991
t-stat 0.4063 -0.2114 0.7034 0.1285 -0.5766 1.3330

108.75

90.60

82.86

Dividend-Price Ratio

0.0550

0.0549

0.0549

0.0473

0.0539

0.0539

0.0539

0.0473

0.0539

Book-to-Market Ratio

0.1118

0.1134

0.1219 0.0389

0.0388

0.0387 0.1190

0.1207

0.0946 0.9054

0.8793

0.8810 11.19

12.43

11.36

13.04

11.38 108.79

97.67

93.74

0.1178

0.0947

0.8822

0.8822

0.9053

0.1163

0.1211

0.0389

0.0389

0.0389

109.08

100.53

103.63

0.1158 0.1178 12.52

Earning-Price Ratio

0.1150 0.0390

0.1159 0.0389

0.1218 0.0388

0.1135

0.1162 0.8838

0.9047

12.87

13.63

11.49

1 month

6 month
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1 month

6 month
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Ergodic Probabilities Duration (months)
Horizon

Regime 1 Regime 2Linear Linear Markov switching Linear Markov switching

0.0953

0.8865

Transition Matrixβ Std.error
Markov switching Regime 1 Regime 2 Regime 2Regime 1
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Table 4: Switching Strategies Realized Out-of-Sample Performance Indicators 
The table shows realized performances from a pseudo, recursive out-of-sample exercise at 
different levels of transaction costs, in which switching strategies are alternatively based on linear 
vs. non-linear (Markov switching) predictive regressions. In the table, B&H means “buy-and-hold”. 

  

Horizon
MS Linear B&H MS Linear B&H MS Linear B&H

0.4950 0.4130 ___ 0.5140 0.4980 ___ 0.6750 0.5990 ___

Mean 0.0070 0.0073 0.0076 0.0069 0.0073 0.0076 0.0069 0.0066 0.0077
Variance 0.0012 0.0013 0.0018 0.0011 0.0013 0.0018 0.0012 0.0010 0.0018
St. Deviation 0.0351 0.0365 0.0427 0.0336 0.0362 0.0427 0.0352 0.0316 0.0429
Sharpe Ratio 0.0826 0.0880 0.0837 0.0855 0.0892 0.0837 0.0822 0.0819 0.0839

Mean 0.0050 0.0044 0.0076 0.0056 0.0070 0.0076 0.0067 0.0069 0.0077
Variance 0.0009 0.0006 0.0018 0.0008 0.0012 0.0018 0.0009 0.0010 0.0018
St. Deviation 0.0301 0.0246 0.0427 0.0289 0.0351 0.0427 0.0307 0.0311 0.0429
Sharpe Ratio 0.0326 0.0143 0.0837 0.0545 0.0836 0.0837 0.0874 0.0907 0.0839

Mean 0.0037 0.0045 0.0076 0.0055 0.0063 0.0076 0.0056 0.0067 0.0077
Variance 0.0007 0.0003 0.0018 0.0006 0.0011 0.0018 0.0007 0.0010 0.0018
St. Deviation 0.0256 0.0183 0.0427 0.0246 0.0333 0.0427 0.0259 0.0310 0.0429
Sharpe Ratio -0.0158 0.0257 0.0837 0.0591 0.0661 0.0837 0.0591 0.0840 0.0839

0.5290 0.5480 ___ 0.6010 0.5360 ___ 0.7140 0.5550 ___

Mean 0.0084 0.0077 0.0076 0.0079 0.0077 0.0076 0.0079 0.0083 0.0077
Variance 0.0015 0.0011 0.0018 0.0015 0.0011 0.0018 0.0017 0.0014 0.0018
St. Deviation 0.0392 0.0334 0.0427 0.0386 0.0338 0.0427 0.0415 0.0371 0.0429
Sharpe Ratio 0.1101 0.1088 0.0837 0.1001 0.1077 0.0837 0.0926 0.1150 0.0839

Mean 0.0060 0.0054 0.0076 0.0074 0.0071 0.0076 0.0078 0.0082 0.0077
Variance 0.0015 0.0008 0.0018 0.0014 0.0011 0.0018 0.0016 0.0014 0.0018
St. Deviation 0.0386 0.0281 0.0427 0.0374 0.0331 0.0427 0.0399 0.0371 0.0429
Sharpe Ratio 0.0516 0.0468 0.0837 0.0883 0.0920 0.0837 0.0948 0.1120 0.0839

Mean 0.0042 0.0039 0.0076 0.0070 0.0071 0.0076 0.0073 0.0082 0.0077
Variance 0.0013 0.0006 0.0018 0.0010 0.0010 0.0018 0.0011 0.0014 0.0018
St. Deviation 0.0361 0.0238 0.0427 0.0319 0.0321 0.0427 0.0328 0.0368 0.0429
Sharpe Ratio 0.0026 -0.0056 0.0837 0.0906 0.0940 0.0837 0.0977 0.1126 0.0839

0.5180 0.4820 ___ 0.5890 0.4760 ___ 0.7240 0.5670 ___

Mean 0.0080 0.0069 0.0076 0.0078 0.0070 0.0076 0.0076 0.0076 0.0077
Variance 0.0016 0.0010 0.0018 0.0016 0.0011 0.0018 0.0017 0.0014 0.0018
St. Deviation 0.0401 0.0320 0.0427 0.0402 0.0333 0.0427 0.0407 0.0370 0.0429
Sharpe Ratio 0.0975 0.0878 0.0837 0.0942 0.0871 0.0837 0.0883 0.0945 0.0839

Mean 0.0052 0.0046 0.0076 0.0072 0.0064 0.0076 0.0070 0.0072 0.0077
Variance 0.0015 0.0007 0.0018 0.0016 0.0010 0.0018 0.0015 0.0013 0.0018
St. Deviation 0.0391 0.0263 0.0427 0.0399 0.0317 0.0427 0.0390 0.0366 0.0429
Sharpe Ratio 0.0285 0.0218 0.0837 0.0781 0.0740 0.0837 0.0757 0.0852 0.0839

Mean 0.0033 0.0037 0.0076 0.0062 0.0060 0.0076 0.0055 0.0072 0.0077
Variance 0.0014 0.0006 0.0018 0.0014 0.0010 0.0018 0.0009 0.0013 0.0018
St. Deviation 0.0378 0.0237 0.0427 0.0370 0.0309 0.0427 0.0307 0.0365 0.0429
Sharpe Ratio -0.0213 -0.0134 0.0837 0.0569 0.0615 0.0837 0.0471 0.0859 0.0839
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Table 5: Mean-Variance Realized Out-of-Sample Performances 
The table shows realized performances from a pseudo, recursive out-of-sample exercise in which 
mean-variance strategies are alternatively based on linear vs. non-linear (Markov switching) 
predictive regressions. In the table, CEV is the certainty equivalent realized value function. γ is the 
constant coefficient of risk aversion. 

  

Horizon
MS Linear MS Linear MS Linear

Δ CEV -0.0005 -0.0001 -0.0060 -0.0036 -0.1153 -0.0405
Variance with DP 0.0009 0.0008 0.0012 0.0067 0.0147 0.0779
Variance Gaussian IID 0.0018 0.0018 0.0123 0.0123 0.1126 0.1126
Test Statistic -0.2522 -0.0514 -1.3455 -0.6802 -8.0743 -2.3181

Δ CEV 0.0000 0.0005 0.0015 0.0015 -0.0220 -0.0400
Variance with DP 0.0007 0.0005 0.0004 0.0032 0.0143 0.0699
Variance Gaussian IID 0.0010 0.0010 0.0061 0.0061 0.0673 0.0673
Test Statistic 0.0000 0.3335 0.4862 0.4050 -1.9240 -2.6976

Δ CEV -0.0004 0.0002 0.0003 0.0008 0.0501 -0.0624
Variance with DP 0.0003 0.0001 0.0002 0.0011 0.0142 0.0553
Variance Gaussian IID 0.0003 0.0003 0.0017 0.0017 0.0487 0.0487
Test Statistic -0.4219 0.2495 0.1774 0.3937 4.9910 -4.8335

Δ CEV 0.0002 0.0005 -0.0046 0.0027 -0.1130 -0.0061
Variance with EP 0.0015 0.0013 0.0018 0.0075 0.0145 0.0929
Variance Gaussian IID 0.0018 0.0018 0.0123 0.0123 0.1126 0.1126
Test Statistic 0.0912 0.2353 -1.0084 0.4997 -7.9177 -0.3362

Δ CEV 0.0002 0.0002 0.0022 0.0005 -0.0210 -0.0196
Variance with EP 0.0011 0.0007 0.0004 0.0045 0.0142 0.0766
Variance Gaussian IID 0.0010 0.0010 0.0061 0.0061 0.0673 0.0673
Test Statistic 0.1141 0.1269 0.7089 0.1265 -1.8374 -1.2907

Δ CEV -0.0011 -0.0001 0.0008 -0.0004 0.0508 -0.0627
Variance with EP 0.0006 0.0002 0.0003 0.0016 0.0141 0.0627
Variance Gaussian IID 0.0003 0.0003 0.0017 0.0017 0.0487 0.0487
Test Statistic -0.9673 -0.1122 0.4716 -0.1813 5.0624 -4.6926

Δ CEV -0.0004 0.0387 -0.0056 -0.0053 -0.1028 -0.0256
Variance with BM 0.0016 0.0009 0.0021 0.0058 0.0183 0.0750
Variance Gaussian IID 0.0018 0.0018 0.0123 0.0123 0.1126 0.1126
Test Statistic -0.1797 19.5183 -1.2154 -1.0260 -7.0976 -1.4765

Δ CEV -0.0009 -0.0007 0.0019 -0.0039 -0.0146 -0.0290
Variance with BM 0.0013 0.0006 0.0005 0.0043 0.0146 0.0662
Variance Gaussian IID 0.0010 0.0010 0.0061 0.0061 0.0673 0.0673
Test Statistic -0.4908 -0.4577 0.6098 -0.9958 -1.2740 -1.9827

Δ CEV -0.0014 -0.0016 0.0006 -0.0076 0.0557 -0.0408
Variance with BM 0.0006 0.0004 0.0003 0.0026 0.0139 0.0532
Variance Gaussian IID 0.0003 0.0003 0.0017 0.0017 0.0487 0.0487
Test Statistic -1.2229 -1.5816 0.3527 -3.0178 5.5594 -3.1928
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Figure 1: Dynamics of Coefficient Estimates at 1 Month Horizon for the 
Dividend-Price, Earning-Price, and Book-to-Market Ratios 
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Figure 2a: Dynamics of the Differences in Root-Mean-Square Forecast Errors 
Implied by Dividend-Price Ratio Predictability 
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Figure 2b: Dynamics of the Differences in Root-Mean-Square Forecast Errors 
Implied by Earnings-Price Ratio Predictability
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Figure 2c: Dynamics of the Differences in Root-Mean-Square Forecast Errors 
Implied by Book-to-Market Ratio Predictability
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Figure 3a: Increase in Mean-Variance Certainty Equivalent Return from 
Exploiting Dividend-Price Ratio Predictability at Different Investment 

Horizons in the MS Model 
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Figure 3b: Increase in Mean-Variance Certainty Equivalent Return from 
Exploiting Earnings Price Ratio Predictability at Different Investment 

Horizons in the MS Model 
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Figure 3c: Increase in Mean-Variance Certainty Equivalent Return from 
Exploiting Book to Market Ratio Predictability at Different Investment 

Horizons in the MS Model 
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Figure 4: Annualized Compensatory Fee at Different Horizons Due to 
Switching from Linear to MS Models under Buy-and-Hold and Rebalancing 

Strategies for Power Utility, CRRA Preferences ( = 5) 
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